
Foliant

User’s Manual

Welcome to Foliant!
Foliant is an all-in-one single-source documentation authoring tool. It lets you pro-
duce standalone documents in pdf and docx, build static websites and upload pages
to Confluence, all from single Markdown source.

Foliant is a higher order tool, which means it uses other programs to do its job. For
building pdf and docx, it can use Pandoc or md-to-pdf, for websites MkDocs, Aglio or
Slate.

Foliant preprocessors let you reuse parts of your documents, show and hide content
with flags, render diagrams from text, and much more.

Foliant is highly extensible, so if it lacks some functions or output formats you can
always make a plugin for it or request one from our team.

Logo made by Hand Drawn Goods from flaticon.com.

Who Is It for?
You’ll love Foliant if you:

— need to ship documentation as pdf, docx, and websites
— want to use Markdown with consistent extension system instead of custom syntax

for every new bit of functionality
— like reStructuredText’s extensibility and AsciiDoc’s flexibility, but would rather use

Markdown
— want a tool that you can extend with custom plugins without dealing with some-

thing as over-engineered as Sphinx
— want to work with docs as code and make them a part of your CI pipeline
— have a lot of segregated repositories with sources of your documents and want to

standardize the documentation approach.

Changelog
Here is the changelog of Foliant Core, the main and only strictly required package.
See also the history of releases of numerous Foliant extensions.

Welcome to Foliant! | .December 12, 2021 1

https://pandoc.org/
https://github.com/simonhaenisch/md-to-pdf
https://www.mkdocs.org/
https://github.com/danielgtaylor/aglio
https://github.com/slatedocs/slate
http://handdrawngoods.com/
https://www.flaticon.com/
https://github.com/foliant-docs/foliant/

1.0.12
— Add the disable_implicit_unescape option. Remove warning when

escape_code is not set.
— Support the !env YAML tag to use environment variables in the project config.
— Allow to specify custom directory to store logs with the --logs|-l command

line option.
— Flush output to STDOUT in progress status messages and in the foliant.utils

.output() method.
— Get and log the names and versions of all installed Foliant-related packages.
— Do not raise exception of the same type that is raised by a preprocessor, raise

RuntimeError instead because some exceptions take more arguments than one.

1.0.11
— Allow to specify custom options for EscapeCode preprocessor as the

escape_code.options config parameter value.
— Pass the quiet flag to BaseParser() as an optional argument for using in

config extensions.

1.0.10
— Add escape_code config option. To use it, escapecode and unescapecode pre-

processors must be installed.

1.0.9
— Process attribute values of pseudo-XML tags as YAML.
— Allow single quotes for enclosing attribute values of pseudo-XML tags.
— Add !project_path and !rel_path YAML tags.

1.0.8
— Restore quiet mode.
— Add the output() method for using in preprocessors.

1.0.7
— Remove spinner made with Halo.

Changelog | .December 12, 2021 2

— Abolish quiet mode because it is useless if extensions are allowed to write anything
to STDOUT.

— Show full tracebacks in debug mode; write full tracebacks into logs.

1.0.6
— CLI: If no args are provided, print help.
— Fix tags searching pattern in _unescape preprocessor.

1.0.5
— Allow to override default config file name in CLI.
— Allow multiline tags. Process true and false attribute values as boolean, not

as integer.
— Add tests.
— Improve code style.

1.0.4
— Breaking change. Add logging to all stages of building a project. Config

parser extensions, CLI extensions, backends, and preprocessors can now access
self.logger and create child loggers with self.logger = self.logger

.getChild('newbackend').
— Add pre backend with pre target that applies the preprocessors from the config

and returns a Foliant project that doesn’t require any preprocessing.
— make now returns its result, which makes is easier to call it from extensions.

1.0.3
— Fix critical issue when config parsing would fail if any config value contained non-

latin characters.

1.0.2
— Use README.md as package description.

1.0.1
— Fix critical bug with CLI module caused by missing version definition in the root

__init__.py file.

Changelog | .December 12, 2021 3

1.0.0
— Complete rewrite.

Changelog | .December 12, 2021 4

Installation
Installation of Foliant is split into three stages: installing Python with your system’s
package manager, installing Foliant with pip, and optionally installing Pandoc and
TeXLive bundle. Below you’ll find the instructions for three popular platforms: macOS,
Windows, and Ubuntu.

Alternatively, you can avoid installing Foliant and its dependencies on your system by
using Docker and Docker Compose.

macOS
1. Install Python 3 with Homebrew:

$ brew install python3

2. Install Foliant with pip:

$ pip3 install foliant foliantcontrib.init

3. If you plan to bake PDF or DOCX, install Pandoc and MacTeX with Homebrew:

$ brew install pandoc mactex librsvg

Finally, install the Pandoc backend:

$ pip3 install foliantcontrib.pandoc

Windows
0. Install Scoop package manager in PowerShell:

$ iex (new-object net.webclient).downloadstring('https://

get.scoop.sh')

1. Install Python 3 with Scoop:

$ scoop install python

2. Install Foliant with pip:

$ python -m pip install foliant foliantcontrib.init

Installation | .December 12, 2021 5

https://scoop.sh/

3. If you plan to bake pdf or DOCX, install Pandoc and MikTeX with Scoop:

$ scoop install pandoc latex

Finally, install the Pandoc backend:

$ pip3 install foliantcontrib.pandoc

Ubuntu
1. Install Python 3 with apt.

On 18.04 or higher Python 3 will already be installed. Check that by running:

$ python3

If it is not installed, here’s a way to install the latest version:

1 $ sudo apt update

2 $ sudo apt install software-properties-common

3 $ sudo add-apt-repository ppa:deadsnakes/ppa

4 $ sudo apt install python3.9 python3-pip

2. Install Foliant with pip:

$ pip3 install foliant foliantcontrib.init

3. If you plan to bake pdf or DOCX, install Pandoc and TeXLive with apt and wget:

1 $ sudo apt update

2 $ sudo apt install -y texlive-full librsvg2-bin pandoc

Finally, install the Pandoc backend:

$ pip3 install foliantcontrib.pandoc

Docker
There is a selection of Docker images for Foliant in the Docker hub:

— foliant/foliant:slim — minimal image of Foliant with no extensions;
— foliant/foliant — the basic image with just Foliant core and the init

command;

Ubuntu | .December 12, 2021 6

https://hub.docker.com/r/foliant/foliant

— foliant/foliant:pandoc— asic image with the addition of TexLive and Pan-
doc for building PDF and DOCX;

— foliant/foliant:full — the full image with all official Foliant extensions
and third-party tools required for them to work.

Choose the image you want and run the docker pull command

$ docker pull foliant/foliant

If you are new to Docker, check our tutorial on using Foliant with Docker.

Docker | .December 12, 2021 7

Quickstart
If you don’t have Foliant installed, please follow the instructions first.

Step 1. Create a new project

$ foliant init

Or with Docker

$ docker run --rm -it --user $(id -u):$(id -g) -v $(pwd):/

usr/src/app -w /usr/src/app foliant/foliant init

Step 2. cd into the folder created by command

$ cd my-project

Step 3. Edit the Markdown source of your documentation located in src/index.md.

To build a static site with MkDocs, install the MkDocs backend (skip this step if you
are using Docker)

pip3 install foliantcontrib.mkdocs

Step 4. Build the site with foliant make command

$ foliant make site

Or with Docker

$ docker-compose run --rm foliant make site

Done! Your site is generated in the My_Project-2020-05-25.mkdocs folder,
crank up a webserver to take a look at it

1 $ python3 -m http.server -d My_Project-2020-05-25.mkdocs

2 Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Now let’s build a DOCX out of the same source. You will need Pandoc and Pandoc
backend for that, the instructions for installing them are in the installation guide.

Step 5. Build docx

$ foliant make docx

Quickstart | .December 12, 2021 8

https://www.mkdocs.org/
https://pandoc.org/

With Docker you will need to adjust the Dockerfile first, replace the first line with the
following

1 - FROM foliant/foliant

2 + FROM foliant/foliant:pandoc

and rebuild the image

$ docker-compose build

Finally, run the make command inside the container

$ docker-compose run --rm foliant make docx

Done! The My_Project-2020-05-25.docx is created in the project dir.

If you want to know more about how Foliant works, check out the Architecture And
Basic Design Concepts or just dive straight into Your First Foliant Project.

Quickstart | .December 12, 2021 9

Tutorials
Your First Foliant Project
In this tutorial, you’ll learn how to use Foliant to build websites and pdf documents
from a single Markdown source. You’ll also learn how to use Foliant preprocessors.

It is recommended to run Foliant through Docker to get consistent results
on different machines, but it’s also perfectly fine to run it natively (e.g. as
a pure CLI tool without virtualization). In this tutorial, we will show the
example commands for both native way (these will go first) and the Docker
way (these will follow).

Create New Project
All Foliant projects must adhere to a certain structure. Luckily, you don’t have to
memorize it thanks to the Init extension.

You should have installed it during Foliant installation and it’s included in Foliant’s
default Docker image.

To use it, run foliant init command

1 $ foliant init

2 Enter the project name: Hello Foliant

3 Generating Foliant project─────────────────────
4

5 Project "Hello Foliant" created in hello-foliant

To do the same with Docker, run

1 $ docker run --rm -it --user $(id -u):$(id -g) -v $(pwd):/

usr/src/app -w /usr/src/app foliant/foliant init

2 Enter the project name: Hello Foliant

3 Generating project... Done─────────────────────
4

5 Project "Hello Foliant" created in hello-foliant

The init command created a structure for the Foliant project in hello-foliant

subfolder.

Tutorials | .December 12, 2021 10

1 $ cd hello-foliant

2 $ tree

3 .├──
4 docker-compose.yml├──
5 Dockerfile├──
6 foliant.yml├──
7 README.md├──
8 requirements.txt└──
9 src

10 └── index.md

11

12 1 directory, 6 files

foliant.yml is your Project Configuration file.

src is the directory for your Markdown documents. Currently, there’s just one file
there called index.md.

requirements.txt lists the Python packages required for the project: Foliant
backends and preprocessors, MkDocs themes, and whatnot. When the Docker image
for the project is built, these requirements will be installed in it.

Dockerfile and docker-compose.yml are necessary to build the project in a
Docker container.

Build Site
To build a site you will first need a suitable backend. To catch up with the termi-
nology, check this article, but in short, backends are Foliant modules responsible for
converting Markdown sources into the final documentation format.

Let’s start with MkDocs backend. First, install it using the following command

pip3 install foliantcontrib.mkdocs

Docker users would normally need to add this package to the requirements.txt

file instead, but mkdocs is already there by default if you used init to generate
project structure.

To build a site, in the project directory, run

1 $ foliant make site

Your First Foliant Project | .December 12, 2021 11

2 Parsing config... Done

3 Applying preprocessor mkdocs... Done

4 Applying preprocessor _unescape... Done

5 Making site with MkDocs... Done────────────────────
6

7 Result: Hello_Foliant-2020-05-25.mkdocs

Or, with Docker Compose

1 $ docker-compose run --rm foliant make site

2 Parsing config... Done

3 Applying preprocessor mkdocs... Done

4 Applying preprocessor _unescape... Done

5 Making site with MkDocs... Done────────────────────
6

7 Result: Hello_Foliant-2020-05-25.mkdocs

That’s it! Your static, MkDocs-powered website is ready. To look at it, use any web
server, for example, Python’s built-in one.

1 $ python3 -m http.server -d Hello_Foliant-2020-05-25.mkdocs

2 Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Open localhost:8000 in your web browser. You should see something like this

Your First Foliant Project | .December 12, 2021 12

http://localhost:8000/

Figure 1. Basic Foliant project built with MkDocs

Build PDF
To build PDF with Pandoc natively, first you will need to install Pandoc itself and
TexLive, check Foliant installation page for instructions.

Then, in the project directory, run

1 $ foliant make pdf

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making pdf with Pandoc... Done────────────────────
6

7 Result: Hello_Foliant-2020-05-25.pdf

To build pdf in Docker container, first uncomment foliant/foliant:pandoc in
your project’s Dockerfile

1 - FROM foliant/foliant

2 + # FROM foliant/foliant

3 # If you plan to bake PDFs, uncomment this line and comment

the line above:

Your First Foliant Project | .December 12, 2021 13

4 - # FROM foliant/foliant:pandoc

5 + FROM foliant/foliant:pandoc

6

7 COPY requirements.txt .

8

9 RUN pip3 install -r requirements.txt

Note

Run docker-compose build to rebuild the image from the new base
image if you have previously run docker-compose run with the old
one. Also, run it whenever you need to update the versions of the required
packages from requirements.txt.

Then, run this command in the project directory

1 $ docker-compose run --rm foliant make pdf

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making pdf with Pandoc... Done────────────────────
6

7 Result: Hello_Foliant-2020-05-25.pdf

Your standalone pdf documentation is ready! It should look something like this

Your First Foliant Project | .December 12, 2021 14

Figure 2. Basic Foliant project built with Pandoc

Your First Foliant Project | .December 12, 2021 15

Edit Content
Your project’s content lives in .md files inside the src folder. You can organize it
into multiple files and subfolders inside the src as you please.

Foliant encourages pure Markdown syntax as described by John Gruber. Pandoc, Mk-
Docs, and other backend-specific additions are allowed, but we strongly recommend
putting them in <if>...</if>.

Let’s create a file hello.md inside src folder

$ touch src/hello.md

And fill it with some content. For example

1 # Hello Again

2

3 This is regular text generated from regular Markdown.

4

5 Foliant ’doesnt force any *special* Markdown flavor.

Now you have two files (or chapters) inside src, but Foliant knows only about one
of them. To add hello.md to the project, open foliant.yml and add the new
chapter to the chapters list

1 title: Hello Foliant

2

3 chapters:

4 - index.md

5 + - hello.md

Let’s rebuild the project to see the new page.

The native command

1 foliant make pdf && foliant make site

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making pdf with Pandoc... Done────────────────────
6

7 Result:

Your First Foliant Project | .December 12, 2021 16

https://daringfireball.net/projects/markdown/

8 Hello_Foliant-2020-05-25.pdf

9 Parsing config... Done

10 Applying preprocessor mkdocs... Done

11 Applying preprocessor _unescape... Done

12 Making site with MkDocs... Done────────────────────
13

14 Result: Hello_Foliant-2020-05-25.mkdocs

The command for Docker

1 $ docker-compose run --rm foliant make site && docker-

compose run --rm foliant make pdf

2 Parsing config... Done

3 Applying preprocessor mkdocs... Done

4 Applying preprocessor _unescape... Done

5 Making site with MkDocs... Done────────────────────
6

7 Result: Hello_Foliant-2020-05-25.mkdocs

8 Parsing config... Done

9 Applying preprocessor flatten... Done

10 Applying preprocessor _unescape... Done

11 Making pdf with Pandoc... Done────────────────────
12

13 Result: Hello_Foliant-2020-05-25.pdf

And see the new page appear on the site and in the pdf document

Your First Foliant Project | .December 12, 2021 17

Figure 3. New page on the site

Your First Foliant Project | .December 12, 2021 18

Figure 4. New page in the pdf document

Your First Foliant Project | .December 12, 2021 19

Use Preprocessors
Preprocessors are additional Foliant packages that transform your Markdown chapters
in different ways. You can do all kinds of stuff with them:

— include remote Markdown files or their parts in the source files,
— perform auto-replace,
— render diagrams from their textual description on the build,
— restructure the project source or compile it into a single file for a particular back-

end.

Preprocessors don’t touch your sources in the src folder. Instead, they copy them
into a temporary directory and transform the fresh copies on each build.

In fact, you have already used two preprocessors! Look at the output of the foliant

make commands and note the lines Applying preprocessor mkdocs and
Applying preprocessor flatten. The mkdocs preprocessor made your files
compatible with MkDocs’ requirements, and the flatten preprocessor was used to
squash the project source into one file to produce a single PDF with Pandoc. These
preprocessors were called by MkDocs and Pandoc backends implicitly.

Now let’s add a preprocessor into the pipeline ourselves. We’ve chosen Blockdiag
preprocessor for this tutorial.

Embed Diagrams with Blockdiag
Blockdiag is a Python app for generating diagrams. Blockdiag preprocessor extracts
diagram descriptions from the project source and replaces them with the generated
images.

First, we need to install the blockdiag preprocessor

$ pip3 install foliantcontrib.blockdiag

Or, if you are building with docker, add foliantcontrib.blockdiag to require-
ments.txt and rebuild the image with docker-compose build command.

Next, we need to switch on the blockdiag preprocessor in project config. Open
foliant.yml and add the following lines

1 title: Hello Foliant

2 +

3 + preprocessors:

4 + - blockdiag

Your First Foliant Project | .December 12, 2021 20

http://blockdiag.com/

5

6 chapters:

7 - index.md

8 - hello.md

Then, in hello.md, add the following

1 Foliant ’doesnt force any *special* Markdown flavor.

2

3 + <seqdiag caption="This diagram is generated on the fly">

4 + seqdiag {

5 + "foliant make site" -> "blockdiag preprocessor" -> "

mkdocs preprocessor" -> "mkdocs backend" -> site;

6 + }

7 + </seqdiag>

Blockdiag preprocessor extends the Markdown syntax of your documentation by
adding several tags. Each tag produces a different diagram type. Sequence diagrams
are defined with <seqdiag></seqdiag> tag. This is what we used in the sample
above. The diagram definition sits in the tag body and the diagram properties such
as caption or format are defined as tag attributes.

Rebuild the site with foliant make site or docker-compose run --rm

foliant make site and open it in the browser

Your First Foliant Project | .December 12, 2021 21

Figure 5. Sequence diagram drawn with seqdiag on the site

Rebuild the pdf and see that the diagram is there too

Your First Foliant Project | .December 12, 2021 22

Figure 6. Sequence diagram drawn with seqdiag in the pdf

Your First Foliant Project | .December 12, 2021 23

Let’s customize the look of the diagrams in our project by setting their properties in the
config file. For example, let’s use a custom font for labels. I’m using the ever-popular
Comic Sans font, but you can pick any font that’s available in .ttf format.

Put the font file in the project directory and add the following lines to foliant.yml

1 preprocessors:

2 - - blockdiag

3 + - blockdiag:

4 + params:

5 + font: !path comic.ttf

After a rebuild, the diagram on the site and in the pdf should look like this

Figure 7. Sequence diagram with Comic Sans in labels, site

Your First Foliant Project | .December 12, 2021 24

Figure 8. Sequence diagram with Comic Sans in labels, pdf

There are many more params you can define for your diagrams. You can override glob-
al params for particular diagrams in their tags. And by combining this preprocessor
with Flags you can even set different params for different backends, for example, build
vector diagrams for pdf output and bitmap for site

1 This is a diagram that is rendered to `.png` in HTML and to

`.pdf` in pdf:

2

3 <blockdiag format="<if targets="site">png</if><if targets="

pdf">pdf</if>">

4 ...

5 </blockdiag>

The possibilities acquired by combining different preprocessors are endless!

Why Foliant Uses XML syntax for Preprocessor Tags

It’s common for Markdown-based tools to extend Markdown with custom
syntax for additional functions. There’s no standard for custom syntax in

Your First Foliant Project | .December 12, 2021 25

the Markdown spec, so every developer uses whatever syntax is available
for them, a different one for every new extension.

In Foliant, we tried our best not to dive into this mess. Foliant aims to be
an extensible platform, with many available preprocessors. So we needed
one syntax for all preprocessors, but the one that was flexible enough to
support them all.

After trying many options, we settled with XML. Yes, normally you’d have
a nervous tick when you hear XML, and so would we, but this is one rare
case where XML syntax belongs just right:

— it allows to provide tag body and named parameters,
— it’s familiar to every techwriter out there,
— it’s close enough to HTML, and HTML tags are actually allowed by the

Markdown spec, so we’re not even breaking the vanilla Markdown spec
(almost),

— it’s nicely highlighted in IDEs and text editors.

Running Foliant in Docker
Foliant’s design philosophy says that everybody should do what they do best. We don’t
aim to create a universal text processing combine which covers all needs of a technical
writer by itself. Instead Foliant introduces integrations with different beautiful open
source tools which specialize on a little chunk of work and do it perfectly.

This approach comes with a disadvantage that you have to install each one of the
tools you are using in the project for Foliant to work. You may do it once on your
machine but Foliant projects usually need to work as well for other people if they
decide to clone your project’s repository. And these people may not have the right
tool installed, or they may have another version of it, or even an operating system
which doesn’t have the tool at all.

Docker solves this problem by creating a virtual environment which will be consistent
among different machines and even different operating systems. All the required tools
will be installed and configured inside this virtual environment so all it’s left to do is
to run the build.

Working with Docker may seem complicated for non-programmers, but we will try to
make it simple. We will concentrate on practical examples and keep the technical
details out of this tutorial. If you want them — check the Docker documentation.

Running Foliant in Docker | .December 12, 2021 26

https://docs.docker.com/

Getting Docker
The first step is to download and install Docker.

Windows

Go to https://www.docker.com/get-started and download Docker installer.

Follow the instructions of the installer. In the end, it may ask you to restart the com-
puter. After restarting, run Docker by the shortcut in your Start menu.

Linux

Follow the instructions for your Linux distribution on the official website.

After that install Docker Compose.

MacOs

Download and install Docker from this page.

Creating a Test Project
Now that we’ve got Docker, we can create our test project.

If you have Foliant installed on your system, run the init command

$ foliant init

Type the name of the project and cd into the freshly created folder.

But that’s the beauty of the Docker way, you don’t even need to have Foliant installed
on you computer to build Foliant projects. Instead of using init you can clone
the Foliant Project template. It’s an empty Foliant project with the required file and
directory structure, including necessary Docker configs. It’s similar to what you get by
running foliant init.

Now cd to the cloned directory and remove the .git folder, which still points to
the template repository.

Setting up Docker configs
We’ve got a basic project which we already can build with Docker.

Inside the project dir run:

$ docker-compose run --rm foliant make site

Running Foliant in Docker | .December 12, 2021 27

https://www.docker.com/get-started
https://docs.docker.com/engine/install/
https://docs.docker.com/compose/install/#install-compose-on-linux-systems
https://hub.docker.com/editions/community/docker-ce-desktop-mac/
https://github.com/foliant-docs/foliant_project_template

Right now our project can only build an MkDocs site. If we try to build a pdf we will
get

1 $ docker-compose run --rm foliant make pdf

2 No backend available for pdf.

If you are already familiar with Foliant you know that to build PDFs you need to install
Pandoc with TeXLive and Pandoc backend. So how do we install that in a Docker
container?

In your project root you have a Dockerfile. This file describes the steps required
to set up your virtual container.

If you open the Dockerfile, you will see that apart from comments it contains
three lines:

1 FROM foliant/foliant

2

3 COPY requirements.txt .

4

5 RUN pip3 install -r requirements.txt

The first line means that we start out with the base Foliant image, more on that later.
The second one copies the file requirements.txt from your project folder into
the container and the last one installs all Python dependencies from this file with
pip from inside the container.

requirements.txt is a file where all your Python dependencies for the project
live. It means that adding the Pandoc backend to the virtual environment is a matter
of adding it into requirements.txt. Let’s do this now:

1 foliantcontrib.mkdocs

2 + foliantcontrib.pandoc

With Pandoc and TeXLive it’s not that easy, because they are not Python packages. But
don’t worry, it’s still easy enough.

Your virtual container is based on foliant/foliant image, which is in turn based
on Ubuntu operating system. So all you need to do is to find the right commands to
install the required packages as if you were on Ubuntu.

These commands are

Running Foliant in Docker | .December 12, 2021 28

https://pandoc.org/

1 apt update

2 apt install -y texlive-full librsvg2-bin

3 apt install -y pandoc

So we take this commands and put them in our Dockerfile, but we will put RUN

before each one to explain Docker our intentions. The order in which lines appear in
the Dockerfile is important. Docker does a nice job of caching stages of container
build, so make a rule of putting the commands which less prone to change at the start.

In our case we will probably be editing our requirements.txt further down the
line, but the pandoc installation commands are unlikely to change so we put them
first:

1 FROM foliant/foliant

2

3 + ENV DEBIAN_FRONTEND=noninteractive

4 + RUN apt update

5 + RUN apt install -y texlive-full librsvg2-bin

6 + RUN apt install -y pandoc

7

8 COPY requirements.txt .

9

10 RUN pip3 install -r requirements.txt

We’ve also added an environment variable DEBIAN_FRONTEND which is required to
install texlive-full inside a Docker container. Consider it magic, just don’t forget to
add it each time you install texlive in Docker.

Now we need to rebuild our container. If we were to run the docker-compose run

command now, it would still run in the old container, which doesn’t have pandoc. So
let’s build it

$ docker-compose build

This command will now take time to complete because of the TeXLive engine which
is HUGE. Don’t worry, you will need to wait for so long just once.

Now, as it’s starting to get dark and you can hear the workers coming home from the
factories, our image has finished building.

Let’s make a PDF!

Running Foliant in Docker | .December 12, 2021 29

$ docker-compose run --rm foliant make pdf

If all went right you will see a PDF file in your project folder.

Using different Foliant Docker images
You’ve noticed that docker-compose build command took a lot of time to com-
plete because it needed to download and install the massive TexLive engine. It would
be a pain to repeat this for each new Foliant project.

Luckily, Foliant offers a selection of Docker images, each of which offers different
number of tools preinstalled. One of the images is called pandoc and has the same
packages which we’ve installed in the previous section.

The full list is:

— slim — minimal image of Foliant with no extensions;
— latest — same as slim but with the foliant init command support;
— pandoc — image of Foliant with Pandoc backend, Pandoc itself, and LaTeX (

texlive-full Ubuntu package);
— full — most complete image of Foliant with all released extensions and depen-

dencies required for them.

Let’s update our project to use the pandoc image instead of manually installing the
dependencies.

The image to use for the project is specified on the first line of the Dockerfile.
Open it and replace the first line with:

1 - FROM foliant/foliant

2 + FROM foliant/foliant:pandoc

Now remove the lines which we’ve added previouslly so your Dockerfile looks
like this:

1 FROM foliant/foliant:pandoc

2

3 RUN pip3 install -r requirements.txt

Next, remove the Pandoc backend from requirements.txt as it is also prein-
stalled in the pandoc image.

Finally, rebuild the image and run the PDF making command:

Running Foliant in Docker | .December 12, 2021 30

https://hub.docker.com/r/foliant/foliant/tags

1 $ docker-compose build

2 $ docker-compose run --rm foliant make pdf

Once the pandoc image is downloaded, the build commands will always run very
fast.

Working with Foliant full image
We’ve learned how to use Foliant with Docker, how to install dependencies inside the
container and how to use different Foliant images.

Now it’s time to learn about the full Foliant image. This is the most powerful one
of all. It has all official Foliant extensions and all their dependencies preinstalled.

Once you base your Dockerfile on this image you will have whole power of Foliant
at your disposal whenever you need it.

To use it replace the first line of your Dockerfile with

1 - FROM foliant/foliant

2 + FROM foliant/foliant:full

and run the build command

$ docker-compose build

Now you can for instance make a Slate static website with your docs instead of Mk-
Docs.

The command is

$ docker-compose run --rm foliant make site --with slate

We had to add a --with slate argument to our command to specify the backend
to build site target with. full Foliant docker image contains all available official
backends for Foliant and several of them are capable of building the site target.
Without the --with argument (or -w for short) Foliant would prompt you for the
specific backend name interactively.

Summary
That’s all you need to know to work with Foliant the Docker way. Just remember the
steps:

Summary | .December 12, 2021 31

https://github.com/slatedocs/slate

— put your Python dependencies in the requirements.txt file,
— add commands for installing your non-Python dependencies into the

Dockerfile, preceding them with the RUN,
— rebuild your image with docker-compose build command every time you

edit Dockerfile or requirements.txt. No need to run it after editing your
Markdown sources or Foliant-related configuration files.

And one last note for the full image users. We keep constantly updating Foliant,
adding and updating its extensions. To use all the fresh features update the image
every once in a while with command

$ docker pull registry.itv.restr.im:5000/foliant:full

And don’t forget to rebuild your project’s image after updating:

$ docker-compose build

Documenting API with Foliant
In this tutorial we will learn how to use Foliant to generate documentation from API
specification formats OpenAPI (Swagger), RAML and API Blueprint.

The general idea is that you supply a specification file path (json or yaml for Ope-
nAPI, raml for RAML) to a preprocessor which will generate a Markdown document
out of it. Markdown is what Foliant is good at, so after that you can do anything with
it: convert to PDF, partially include in other documents, etc. In this guide we will
concentrate on building a static website for your API documentation.

Please note that in this article we cover only the basic usage of the tools.
For detailed information on features and customizing output refer to each
component’s doc page.

OpenAPI
Installing prerequisites
Besides Foliant you will need to install some additional packages on your system. If
you are using our full docker image foliant/foliant:full, you can skip this
chapter.

First, install the SwaggerDoc preprocessor which will convert spec file to Markdown.

Documenting API with Foliant | .December 12, 2021 32

https://swagger.io/specification/
https://raml.org/
https://apiblueprint.org/

pip3 install foliantcontrib.swaggerdoc

SwaggerDoc preprocessor uses Widdershins under the hood, so you will need to install
that too.

npm install -g widdershins

Finally, to build the static website we will be using Slate backend:

pip3 install foliantcontrib.slate

Also note that Slate requires Ruby and Bundler to work (that’s a lot of dependencies,
I know).

Creating project
Let’s create Foliant project. The easiest way is to use foliant init command. Af-
ter running the command Foliant will ask you about your project name. We’ve chosen
“OpenAPI docs”, but it may be anything:

1 cd ~/projects

2 foliant init

3 Enter the project name: OpenAPI docs

4 Generating project... Done

5 ────────────────────
6 Project "OpenAPI docs" created in openapi-docs

In the output Foliant informs us that the project was created in a new folder openapi
-docs. Let’s copy your OpenAPI spec file into this folder:

cp ~/Downloads/my_api.yaml ~/projects/openapi-docs

In the end you should get the following directory structure:

1 └──
2 openapi-docs

3 ├── Dockerfile

4 ├── README.md

5 ├── docker-compose.yml

6 ├── foliant.yml

7 ├── my_api.yaml

8 ├── requirements.txt

Documenting API with Foliant | .December 12, 2021 33

https://github.com/Mermade/widdershins/
https://www.ruby-lang.org/en/
https://bundler.io/

9 └── src

10 └── index.md

If you wish to use Docker with full Foliant image, which is the recommended way to
build Foliant projects, then open generated Dockerfile and replace its contents
with the following line:

FROM foliant/foliant:full

Configuring project
Now let’s set up foliant.yml. Right now it looks like this:

1 title: OpenAPI docs

2

3 chapters:

4 - index.md

First add and fill up the preprocessors section at the bottom:

1 preprocessors:

2 - swaggerdoc:

3 spec_path: !path my_api.yaml # path to your API spec

file, relative to project root

At this stage you may also specify path to custom templates dir in environment

: {user_templates: path/to/custom/templates} parameter. Templates
describe the exact way of how to convert structured specification file into a Mark-
down document. For this tutorial we will be using default templates because they are
perfect for our static site. Check Widdershins docs for detailed info on templates.

The last thing we need to do is point Foliant where to insert the generated Markdown
from the spec file. We already have a source file created for us by init command,
called index.md, so let’s use it to store our API docs.

Open openapi-docs/src/index.md with text editor and replace its contents
with the following:

<swaggerdoc></swaggerdoc>

Documenting API with Foliant | .December 12, 2021 34

https://github.com/Mermade/widdershins#templates

Foliant will insert generated markdown on the place of this tag during build. You may
even add some kind of introduction for the API docs before the tag, if you don’t have
such inside your spec file.

That’s it! All is left to do is run make command to build your site.

1 foliant make site --with slate

2 Parsing config... Done

3 Applying preprocessor swaggerdoc... Done

4 Applying preprocessor slate... Done

5 Applying preprocessor _unescape... Done

6 Making site...

7 ...

8 Done

9 ────────────────────
10 Result: OpenAPI_docs-2019-11-29.slate/

If you use docker, the command is:

docker-compose run --rm foliant make site --with slate

Now if you open the index.html from just created OpenAPI_docs

-2019-11-29.slate folder, you should see something like this:

Documenting API with Foliant | .December 12, 2021 35

Figure 9. Slate static site

You can customize the page styles, add or remove language example tabs and tune
other options. Check the Slate backend documentation for details.

RAML
Building API docs from RAML specification is quite similar to that of OpenAPI, the
difference is that instead of swaggerdoc preprocessor you use ramldoc. We will
go through all the steps anyway.

Installing prerequisites
Besides Foliant you will need to install some additional packages on your system. If
you are using our full docker image foliant/foliant:full, you can skip this
chapter.

First, install the RAMLDoc preprocessor which will convert spec file to Markdown.

pip3 install foliantcontrib.ramldoc

RAMLdoc preprocessor uses raml2html with full-markdown-theme under the hood,
so you will need to install those too.

Documenting API with Foliant | .December 12, 2021 36

https://github.com/raml2html/raml2html/
https://github.com/Vanderhoof/raml2html-full-markdown-theme/

npm install -g raml2html raml2html-full-markdown-theme

Finally, to build the static website we will be using Slate backend. If you don’t have
it, run:

pip3 install foliantcontrib.slate

Also note that Slate requires Ruby and Bundler to work.

Creating project
Let’s create Foliant project. The easiest way is to use foliant init command. Af-
ter running the command Foliant will ask you about your project name. We’ve chosen
“API docs”, but it may be anything:

1 cd ~/projects

2 foliant init

3 Enter the project name: API docs

4 Generating project... Done

5 ────────────────────
6 Project "API docs" created in api-docs

In the output Foliant informs us that the project was created in a new folder api-

docs. Now let’s copy your RAML spec file to this folder:

cp ~/Downloads/my_api.raml ~/projects/api-docs

In the end you should get the following directory structure:

1 └──
2 api-docs

3 ├── Dockerfile

4 ├── README.md

5 ├── docker-compose.yml

6 ├── foliant.yml

7 ├── my_api.raml

8 ├── requirements.txt

9 └── src

10 └── index.md

Documenting API with Foliant | .December 12, 2021 37

https://www.ruby-lang.org/en/
https://bundler.io/

If you wish to use Docker with full Foliant image, which is the recommended way to
build Foliant projects, then open generated Dockerfile and replace its contents
with the following line:

FROM foliant/foliant:full

Configuring project
Now let’s set up foliant.yml. Right now it looks like this:

1 title: API docs

2

3 chapters:

4 - index.md

First add and fill up the preprocessors section at the bottom:

1 preprocessors:

2 - ramldoc:

3 spec_path: !path my_api.yaml # path to your API spec

file, relative to project root

At this stage you may also specify path to custom templates dir in the template_dir

parameter. Templates describe the exact way of how to convert structured specifica-
tion file into a Markdown document. raml2html uses Nunjucks templates, which are
stored in the theme. So the easiest way to create your own templates is to copy de-
fault ones and adjust them to your needs. But we will use the default template which
works great with Slate.

The last thing we need to do is point Foliant where to insert the generated Markdown
from the spec file. We already have a source file created for us by init command,
called index.md, so let’s use it to store our API docs.

Open api-docs/src/index.md with text editor and replace its contents with the
following:

<ramldoc></ramldoc>

Foliant will insert generated markdown on the place of this tag during build. You may
even add some kind of introduction for the API docs before the tag, if you don’t have
such in your spec file.

Documenting API with Foliant | .December 12, 2021 38

https://mozilla.github.io/nunjucks/
https://github.com/Vanderhoof/raml2html-full-markdown-theme/tree/master/templates/
https://github.com/Vanderhoof/raml2html-full-markdown-theme/tree/master/templates/

That’s it! All is left to do is run make command to build your site.

1 foliant make site --with slate

2 Parsing config... Done

3 Applying preprocessor ramldoc... Done

4 Applying preprocessor slate... Done

5 Applying preprocessor _unescape... Done

6 Making site...

7 ...

8 Project built successfully.

9

10 Done

11 ────────────────────
12 Result: API_docs-2019-11-29.slate/

If you use docker, the command is:

docker-compose run --rm foliant make site --with slate

Now if you open the index.html from just created API_docs-2019-11-29.

slate folder, you should see something like this:

Figure 10. Slate static site

Documenting API with Foliant | .December 12, 2021 39

You can customize the page styles, add or remove language example tabs and tune
other options. Check the Slate backend documentation for details.

Blueprint
API Blueprint is a Markdown-based API specification format. That’s why the build
process differs from that of OpenAPI or RAML: we skip the converting step and just
add the specification file as a source.

Installing prerequisites
To build a static site we will use Aglio backend which is designed specifically for ren-
dering API Blueprint. So first install the backend and Aglio renderer itself:

1 pip3 install foliantcontrib.aglio

2 npm install -g aglio

Creating project
Let’s create a Foliant project. The easiest way is to use foliant init command. Af-
ter running the command Foliant will ask you about your project name. We’ve chosen
“API docs”, but it may be anything:

1 cd ~/projects

2 foliant init

3 Enter the project name: API docs

4 Generating project... Done

5 ────────────────────
6 Project "API docs" created in api-docs

In the output Foliant informs us that the project was created in a new folder api-

docs. Now copy your Blueprint spec file into the src subfolder (it’s better to change
the extension to .md too), replacing “index.md”:

cp ~/Downloads/spec.abip ~/projects/api-docs/src/index.md

In the end you should get the following directory structure:

1 └──
2 openapi-docs

3 ├── Dockerfile

Documenting API with Foliant | .December 12, 2021 40

https://github.com/danielgtaylor/aglio/

4 ├── README.md

5 ├── docker-compose.yml

6 ├── foliant.yml

7 ├── requirements.txt

8 └── src

9 └── index.md

If you wish to use Docker with full Foliant image, which is the recommended way to
build Foliant projects, then open generated Dockerfile and replace its contents
with the following line:

FROM foliant/foliant:full

Configuring project
Now check your foliant.yml. Right now it looks like this:

1 title: API docs

2

3 chapters:

4 - index.md # this should be your API Blueprint

specification

It may be hard to believe, but no other configuration is required! Let’s build our project:

1 foliant make site --with aglio

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making site... Done

6 ────────────────────
7 Result: OpenAPI_docs-2019-11-29.aglio

If you use docker, the command is:

docker-compose run --rm foliant make site --with aglio

Now if you open the index.html from just created API_docs-2019-11-29.

aglio folder, you should see something like this:

Documenting API with Foliant | .December 12, 2021 41

Figure 11. Aglio static site

It’s not near as attractive as the Slate site we had in previous examples. But don’t
worry, Aglio supports styling with CSS and layout control with Jade templates. It also
has several built-in themes, which look much better than the default one.

Open your foliant.yml again and add following lines at the end:

1 backend_config:

2 aglio:

3 params:

4 theme-variables: streak

5 theme-template: triple

Now run the same build command:

foliant make site --with aglio

And look at the result:

Documenting API with Foliant | .December 12, 2021 42

http://jade-lang.com/

Figure 12. Aglio more beautiful static site

Much better!

Documenting Databases with Foliant
Introduction
In these tutorials we will show you a way to document your database using Foliant.
Right now there are options available for those of you who use PostgreSQL, Oracle,
MySQL, MS SQL Server and DBML. If your DBMS is not in the list, send us an issue,
we’ll do our best to add the support to it as fast as possible.

The principles
Generally, we want to keep our docs as close to the code as possible. For documenting
the source code of an application we usually can utilize the power of Swagger to
generate docs from comments in the sources. Since there’s no Swagger for databases,
we had to invent something similar.

We are going to add actual descriptions of the tables and fields using comments. Com-
ment (not to be confused with SQL script -- comment) is a special entity which in
one way or another is present in most DBMSs. They don’t affect the data or table

Documenting Databases with Foliant | .December 12, 2021 43

https://github.com/foliant-docs/foliantcontrib.dbdoc/issues

structure, they are only used for documentation purposes. You can add a comment
like this:

COMMENT ON TABLE "Clients" IS "Table holding info about the

clients"

After describing all your entities inside your database, we need to get all this informa-
tion for our document. For this we will use Foliant DBDoc preprocessor. It queries the
database to get its structure (including the comments) and converts it into Markdown.
We can then use this Markdown to generate a static site for our documentation.

The tutorials
First tutorial is about creating a document out of DBML schema. DBML is not a
database but a simplified language for describing databases.

The other two tutorials focus on the process of documenting actual databases. We
have tutorials for PostgreSQL and Oracle. But the process of documenting other
databases is quite similar.

Documenting with DBML specification

Documenting Oracle Database

Documenting PostgreSQL Database

Documenting DBML schema
Quote from the official website: DBML (Database Markup Language) is an open-source
DSL language designed to define and document database schemas and structures. It
is designed to be simple, consistent and highly-readable. And that makes it a perfect
choice for the designing stage of your database. You can create your table structure
without messing with cumbersome SQL in a more readible way like this:

1 Table users {

2 id integer

3 username varchar

4 role varchar

5 created_at timestamp

6 }

7

8 Table posts {

Documenting Databases with Foliant | .December 12, 2021 44

https://dbml.org/
https://dbml.org/

9 id integer [primary key]

10 title varchar

11 body text [note: 'Content of the post']

12 user_id integer

13 status post_status

14 created_at timestamp

15 }

16

17 Enum post_status {

18 draft

19 published

20 private [note: 'visible via URL only']

21 }

22

23 Ref: posts.user_id > users.id // many-to-one

As you may have noticed, DBML also has tools to document pieces of you schema
using notes (body text [note: 'Content of the post']) and comments
(Ref: posts.user_id > users.id // many-to-one).

So how can we convert DBML schema descriptions into a human-readible document?
The idea is pretty simple: we parse the DBML definitions and pass them to a Jinja
template, which renders markdown for us. After that we use one of our backends (we
will use Slate in this tutorial) to build a static site out of it.

We won’t need to do it all manually, of course, we just need to configure Foliant to do
it for us.

Installing prerequisites
If you are running Foliant natively, you will need to install some prerequisites. But if
you are working with our Full Foliant Docker image, you don’t need to do that, just
skip to the next stage.

First you will need Foliant, of course. If you don’t have it yet, please, refer to the
installation guide.

Install DBMLDoc and PlantUML preprocessors, and the Slate backend:

$ pip3 install foliantcontrib.dbmldoc foliantcontrib.slate,

foliantcontrib.plantuml

Documenting Databases with Foliant | .December 12, 2021 45

We are going to use Slate for building a static website with documentation, so you
will also need to install Slate dependencies.

Finally, install PlantUML, we will need it to draw database scheme.

Creating project
Let’s create a Foliant project for our experiments. cd into the directory where you
want your project created and run the init command:

1 $ cd ~/foliant_projects

2 $ foliant init

3 Enter the project name: Database Docs

4 Generating project... Done────────────────────
5

6 Project "Database Docs" created in database-docs

7

8 $ cd database-docs

The other option is to clone the Foliant Project template repository:

1 $ cd ~/foliant_projects

2 $ mkdir database-docs

3 $ git clone https://github.com/foliant-docs/

foliant_project_template.git database-docs

4 Cloning into 'database-docs'...

5 remote: Enumerating objects: 11, done.

6 remote: Counting objects: 100% (11/11), done.

7 remote: Compressing objects: 100% (7/7), done.

8 remote: Total 11 (delta 1), reused 11 (delta 1), pack-reused

0

9 Unpacking objects: 100% (11/11), done.

10 $ cd database-docs

Next, let’s download the sample DBML spec and save it into schema.dbml in the
root your Foliant project:

$ wget https://raw.githubusercontent.com/holistics/dbml/

master/packages/dbml-core/__tests__/parser/dbml-parse/input/

general_schema.in.dbml -O schema.dbml

Documenting Databases with Foliant | .December 12, 2021 46

https://github.com/slatedocs/slate/wiki/Using-Slate-Natively
https://plantuml.com/ru/starting
https://github.com/foliant-docs/foliant_project_template/

Setting up project
Now it’s time to set up our config. Open foliant.yml and add the following lines:

1 title: Database Docs

2

3 chapters:

4 - index.md

5

6 +preprocessors:

7 + - dbmldoc:

8 + spec_path: !path schema.dbml

9 + - plantuml

10 +

We’ve added the PlantUML and DBMLDoc preprocessors to the pipeline and specified
path to our DBML sample schema. DBMLDoc will parse the schema and convert it
into Markdown, plantuml will draw the visual diagram of our DB schema.

Note: if plantuml is not available under $ plantuml in your system,
you will also need to specify path to plantuml.jar in preprocessor settings
like this:

1 - plantuml:

2 plantuml_path: /usr/bin/plantuml.jar

Finally, we need to point Foliant the place in the Markdown source files where the
generated documentation should be inserted. Since we already have an index.md

chapter created for us by init command, let’s put it in there. Open src/index.md

and make it look like this:

1 # Welcome to Database Docs

2

3 -Your content goes here.

4 +<dbmldoc></dbmldoc>

5 +

Building site
All preparations are finished, let’s build our site:

Documenting Databases with Foliant | .December 12, 2021 47

1 $ foliant make site -w slate

2 Parsing config... Done

3 Applying preprocessor dbmldoc... Done

4 Applying preprocessor plantuml... Done

5 Applying preprocessor flatten... Done

6 Applying preprocessor _unescape... Done

7 Making site... Done

8 ...────────────────────
9

10 Result: Database_Docs-2020-06-03.slate/

If you are using Docker, the command is:

$ docker-compose run --rm foliant make site -w slate

Now open Database_Docs-2020-06-03.slate/index.html and look at the
results:

That looks good enough, but you may want to tweak the appearance of your site. You
can edit the Jinja-template to change the way DBMLDoc generates markdown out of
your schema. After the first build, the default template should have appeared in your

Documenting Databases with Foliant | .December 12, 2021 48

project dir under the name dbml.j2. If you want to change the looks of you site,
please, refer to the instructions in Slate backend documentation.

Documenting Oracle Database
Please note that in this article covers only the basic usage of the tools.
For detailed information on features and customizing output refer to each
component’s docs.

Installing prerequisites
First you will need to install some prerequisites. If you are running Foliant natively,
follow the guide below. If you are working with our Full Docker image, you will just
need the last paragraph in this section.

First, you will need Foliant, of course. If you don’t have it yet, please, refer to the
installation guide.

Install Python connector for Oracle database.

$ pip3 install cx_Oracle

Install DBDoc and PlantUML preprocessors, and the Slate backend:

$ pip3 install foliantcontrib.dbdoc foliantcontrib.slate,

foliantcontrib.plantuml

We are going to use Slate for building a static website with documentation, so you
will need to install Slate dependencies.

Install PlantUML, we will need it to draw the database scheme.

Install Oracle Instant Client if you don’t have it. We will need it to query the database.

If you are using Docker, you will need to add Oracle Instant Client to your image. Since
it is a proprietary software, we cannot include it in our Full Docker Image. But you
can do it yourself. Our image is based on Ubuntu, so you can find instructions on how
to install Oracle Instant Client on Ubuntu (spoiler: it’s not that easy) and add those
commands into the Dockerfile, or just find those commands made by someone else.
For example, from this Dockerfile by Sergey Makinen. Copy all commands starting
from the third line into your Dockerfile and run docker-compose build to
rebuild the image.

Documenting Databases with Foliant | .December 12, 2021 49

https://github.com/slatedocs/slate/wiki/Using-Slate-Natively
https://plantuml.com/ru/starting
https://www.oracle.com/database/technologies/instant-client.html
https://github.com/sergeymakinen/docker-oracle-instant-client/blob/master/12.2/Dockerfile

Creating project
Let’s create a Foliant project for our experiments. cd to the directory where you want
your project created and run the init command:

1 $ cd ~/foliant_projects

2 $ foliant init

3 Enter the project name: Database Docs

4 Generating project... Done────────────────────
5

6 Project "Database Docs" created in database-docs

7

8 $ cd database-docs

The other option is to clone the Foliant Project template repository:

1 $ cd ~/foliant_projects

2 $ mkdir database-docs

3 $ git clone https://github.com/foliant-docs/

foliant_project_template.git database-docs

4 Cloning into 'database-docs'...

5 remote: Enumerating objects: 11, done.

6 remote: Counting objects: 100% (11/11), done.

7 remote: Compressing objects: 100% (7/7), done.

8 remote: Total 11 (delta 1), reused 11 (delta 1), pack-reused

0

9 Unpacking objects: 100% (11/11), done.

10 $ cd database-docs

Setting up project
Now it’s time to set up our config. Open foliant.yml and add the following lines:

1 title: Database Docs

2

3 chapters:

4 - index.md

5

6 +preprocessors:

7 + - dbdoc:

Documenting Databases with Foliant | .December 12, 2021 50

https://github.com/foliant-docs/foliant_project_template/

8 + dbms: oracle

9 + host: localhost

10 + port: 1521

11 + dbname: orcl

12 + user: hr

13 + password: oracle

14 + - plantuml

15 +

Make sure to use proper credentials for your Oracle database. If you are running
Foliant from docker, you can use host: host.docker.internal to access
localhost from docker.

Note: if plantuml is not available under $ plantuml in your system,
you will also need to specify path to platnum.jar in preprocessor settings
like this:

1 - plantuml:

2 plantuml_path: /usr/bin/plantuml.jar

Finally, we need to point Foliant the place in the Markdown source files where the
generated documentation should be inserted. Since we already have an index.md

chapter created for us by init command, let’s put it in there. Open src/index.md

and make it look like this:

1 # Welcome to Database Docs

2

3 -Your content goes here.

4 +<dbdoc></dbdoc>

5 +

Building site
All preparations done, let’s build our site:

1 $ foliant make site -w slate

2 Parsing config... Done

3 Applying preprocessor dbdoc... Done

4 Applying preprocessor plantuml... Done

Documenting Databases with Foliant | .December 12, 2021 51

5 Applying preprocessor flatten... Done

6 Applying preprocessor _unescape... Done

7 Making site... Done

8 ...────────────────────
9

10 Result: Database_Docs-2020-06-03.slate/

If you are using Docker, the command is:

$ docker-compose run --rm foliant make site -w slate

Now open Database_Docs-2020-06-03.slate/index.html and look what
you’ve got:

That looks good enough, but you may want to tweak the appearance of your site. You
can edit the Jinja-template to change the way DBDoc generates markdown out of your
schema. The default template can be found here. Edit it and save in your project dir,
then specify in the doc_template parameter. If you want to change the looks of
your site, please, refer for instructions in Slate backend documentation.

Documenting Databases with Foliant | .December 12, 2021 52

https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/oracle/templates/doc.j2

Documenting PostgreSQL Database
Please note that this article will cover only the basic usage of the tools.
For detailed information on the features and customizing output refer to
each component’s docs.

Installing prerequisites
You will need to install some prerequisites. If you are running Foliant natively, follow
the guide below. If you are working with our Full Docker image, you don’t need to do
anything, you can skip to the next stage.

First, you will need Foliant, of course. If you don’t have it yet, please, refer to the
installation guide.

Install PostgreSQL and its Python connector.

$ pip3 install psycopg2-binary

Install DBDoc and PlantUML preprocessors, and the Slate backend:

$ pip3 install foliantcontrib.dbdoc foliantcontrib.slate,

foliantcontrib.plantuml

We are going to use Slate for building a static website with documentation, so you
will need to install Slate dependencies.

Finally, Install PlantUML, we will need it to draw the database scheme.

Creating project
Let’s create a Foliant project for our experiments. cd to the directory where you want
your project created and run the init command:

1 $ cd ~/foliant_projects

2 $ foliant init

3 Enter the project name: Database Docs

4 Generating project... Done────────────────────
5

6 Project "Database Docs" created in database-docs

7

8 $ cd database-docs

The other option is to clone the Foliant Project template repository:

Documenting Databases with Foliant | .December 12, 2021 53

https://github.com/slatedocs/slate/
https://github.com/slatedocs/slate/wiki/Using-Slate-Natively
https://plantuml.com/ru/starting
https://github.com/foliant-docs/foliant_project_template/

1 $ cd ~/foliant_projects

2 $ mkdir database-docs

3 $ git clone https://github.com/foliant-docs/

foliant_project_template.git database-docs

4 Cloning into 'database-docs'...

5 remote: Enumerating objects: 11, done.

6 remote: Counting objects: 100% (11/11), done.

7 remote: Compressing objects: 100% (7/7), done.

8 remote: Total 11 (delta 1), reused 11 (delta 1), pack-reused

0

9 Unpacking objects: 100% (11/11), done.

10 $ cd database-docs

Setting up project
Now it’s time to set up our config. Open foliant.yml and add the following lines:

1 title: Database Docs

2

3 chapters:

4 - index.md

5

6 +preprocessors:

7 + - dbdoc:

8 + dbms: pgsql

9 + host: localhost

10 + port: 5432

11 + dbname: posgres

12 + user: posgres

13 + password: posgres

14 + - plantuml

15 +

Make sure to use proper credentials for your PostgreSQL database. If you are run-
ning Foliant from docker, you can use host: host.docker.internal to access
localhost from docker.

Documenting Databases with Foliant | .December 12, 2021 54

Note: if plantuml is not available under $ plantuml in your system,
you will also need to specify path to platnum.jar in preprocessor settings
like this:

1 - plantuml:

2 plantuml_path: /usr/bin/plantuml.jar

Finally, we need to point Foliant the place in the Markdown source files where the
generated documentation should be inserted. Since we already have an index.md

chapter created for us by init command, let’s put it in there. Open src/index.md

and make it look like this:

1 # Welcome to Database Docs

2

3 -Your content goes here.

4 +<dbdoc></dbdoc>

5 +

Building site
All preparations done, let’s build our site:

1 $ foliant make site -w slate

2 Parsing config... Done

3 Applying preprocessor dbdoc... Done

4 Applying preprocessor plantuml... Done

5 Applying preprocessor flatten... Done

6 Applying preprocessor _unescape... Done

7 Making site... Done

8 ...────────────────────
9

10 Result: Database_Docs-2020-06-03.slate/

If you are using Docker, the command is:

$ docker-compose run --rm foliant make site -w slate

Now open Database_Docs-2020-06-03.slate/index.html and look what
you’ve got:

Documenting Databases with Foliant | .December 12, 2021 55

That looks good enough, but you may want to tweak the appearance of your site. You
can edit the Jinja-template to change the way DBDoc generates markdown out of your
schema. The default template can be found here. Edit it and save in your project dir,
then specify in the doc_template parameter. If you want to change the looks of
your site, please, refer for instructions in Slate backend documentation.

Creating a Preprocessor
Introduction
Creating preprocessors for Foliant is quite straightforward because they are essentially
just Python scripts wrapped in a Preprocessor class, which is provided by Foliant
core. In this tutorial, we will go through all steps of creating a new preprocessor.

The full source code of the preprocessor created in this tutorial can be found here.

First of all, we need to decide what our preprocessor will do. Let’s say you need a pre-
processor that will generate some placeholder gibberish text for your documentation,
somewhat like Lorem Ipsum.

Creating a Preprocessor | .December 12, 2021 56

https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/pgsql/templates/doc.j2
https://github.com/foliant-docs/preprocessor_tutorial
https://lipsum.com/

We need a way to tell Foliant to insert the placeholder into a specific part of our
document. The Foliant way of doing that is using an XML-tag like the following.

<gibberish></gibberish>

After the preprocessor is applied, this tag should be transformed into some placehold-
er text.

Hiteap zoiouxwaf jyrcaay yty xuzuapo eyuigouu. Ysseotaeq

ytuiio qqyy yehiiy koyiyoky uul. Pan osfu zoiz oy ikcya

tcsxecy qxiiyo. Gryxeye ogeelaee atprwm mjioy eigyyoov nx qe

tayoiaud jodmaofue yvo ieyuunyrq eaowu. Jyqnr aej elqj

wuytjcae oy igy ak.

We would also want to specify the size of the generated text, so our tag should accept
the size parameter which will define the number of generated sentences:

<gibberish size="15"></gibberish>

The tutorial is split into three stages:

1. Writing the gibberish generator,
2. Wrapping it in a Preprocessor class,
3. Installing and testing the preprocessor.

So let’s get started!

Next: Creating the Gibberish Generator

Creating the Gibberish Generator
There are already several Python packages present on PyPi which generate placehold-
er texts like loremipsum but we won’t deprive ourselves of the fun of creating our own.

Let’s define some requirements:

— The generated text should consist of sentences that start with a capital letter and
end with a dot.

— There should be a way of controlling the size of the sentence and the number of
sentences in the resulting text.

— The words in the text should have at least a slight resemblance with real language
words.

The last requirement is a bit tricky: we don’t want words like q or zxd in our text, or
at least not too many of those, so that the text looks a bit more real. So what we will

Creating a Preprocessor | .December 12, 2021 57

https://github.com/monkeython/loremipsum

do is create a simple gen_word function which will generate a word with a random
number of letters, but the letters will be picked in a more controlled way by another
function called pick_letter:

1 from random import randint

2

3 def gen_word():

4 word_len = randint(2, 9) # [1]

5 return ''.join(pick_letter() for _ in range(word_len))

[2]

1. We’ve restricted the length of the words to 2 to 9 letters so we could avoid too
short and too long words.

2. The pick_letter function will be supplying us with random letters.

Now to the pick_letter function. To make the words look real we don’t want this
function to return too many of the letters q, w, x and z, which don’t appear in the
words often. We also want to get more vowels than consonants: kiobe looks more
like a word than lknsd.

Here’s one way to do it

1 from random import choice, random

2

3 def pick_letter():

4 rare_letters = 'qwxz'

5 vowels = 'aeiouy'

6 consonants = 'cdfghjklmnprstv'

7

8 pick = random() # [1]

9 if pick > 0.9: # [2]

10 return choice(rare_letters) # [3]

11 elif pick > 0.25: # [4]

12 return choice(vowels) # [5]

13 else:

14 return choice(consonants) # [6]

1. Get a random float number from the random function.
2. Since random returns a float from 0.0 to 1.0, there’s about a 10% chance of getting

a float that is larger than 0.9.

Creating a Preprocessor | .December 12, 2021 58

https://docs.python.org/3/library/random.html#random.random

3. In this case, we will randomly pick one of the rare letters: q, w, x, or z with the
choice function.

4. The chance of getting a float between 0.25 and 0.9 is about 65%.
5. In this case, we will return a vowel.
6. Finally, with a chance of about 25%, we will be returning one of the remaining

consonants.

Let’s put it all together and test our gen_word function

1 >>> gen_word()

2 'eojuo'

3 >>> gen_word()

4 'soe'

5 >>> gen_word()

6 'qwiim'

7 >>> gen_word()

8 'itookao'

Oh my god, I think we’ve just created the Finnish language! Jokes aside, it seems that
our words generator works fine.

Now we need to create functions for generating sentences and putting them together
in a text.

1 def gen_sentence(num_words=7): # [1]

2 words = (gen_word() for _ in range(num_words)) # [2]

3 return ' '.join(words).capitalize() # [3]

1. The number of words in the sentence is determined by the num_words parameter
with a sensible default of 7 words.

2. Creating a generator that will yield a new word a required number of times.
3. Joining the generated words into a single string, separated by spaces. We are also

making the first word capitalized in our sentence.

A quick test to make sure it works

1 >>> gen_sentence()

2 'Oveecyyi tukzgoli zvo uqyi ujiffrl viivu odui'

3 >>> gen_sentence(3)

4 'Ioyieyug ie hkeepnyo'

And now to the whole text generator

Creating a Preprocessor | .December 12, 2021 59

https://docs.python.org/3/library/random.html#random.choice
https://docs.python.org/3/reference/expressions.html#generator-expressions

1 def gen_text(num_sentences=10): # [1]

2 sizes = (randint(3, 12) for _ in range(num_sentences))

[2]

3 sentences = (gen_sentence(size) for size in sizes) #

[3]

4 return '. '.join(sentences) + '.' # [4]

1. The text generator will accept one parameter num_sentences with a default of
10.

2. Creating a generator that will yield a number of words in each sentence a required
number of times. We are limiting the sentence size here to 3 to 12 words.

3. Creating a generator that will yield a new sentence a required number of times.
4. Joining the generated sentences into a single string, separated by dots. We are

also adding a dot at the end of the text.

Time for the final test!

1 >>> gen_text()

2 'Eeaidmt cznm aeoiemino ivjuyauq exieh aoioayif yavfkoa

tasojm xuz qizxiyum iyoi fajo. Anuipcauo uac eunjtou oiy

hougqf tulztiawk qooulu eiewewaii. Lxi isoxuau ooovox

wtopuodu oom ougvoeyy ou calxja io reicye yaioyzx. Usmyuavq

yoyu xioqei iiu ateuyau yeroueut gucuifuth tiazkkgc. Oyqzuy

rnzouq ajiof qaxewxufo. Utiselorc qpoaoydoi kyvyiuao ofxaoiy

ueyaoi azdacy lieaiiy au vteccye. Lopgygsz efixuio gi

eyzeuxoa eea qwaycx impoetvy eoyijaum uoiighcq lyaxa xy. Yo

yazd oio yyn gvyifzaeo eyz iewueuqze yy yeadvtx dqmdiy.

Agiiorixk yae tvmu eeeoe aqjy eqnsouejn. Szejaae yl vuoaewt

aujc nvkols auokud reaqopae.'

3 >>> gen_text(2)

4 'Uyayu xpriicoe usao yua duleekayi loqk iop saiy iuys

sciyaihs. Onacrtog ual iei nuuoaz gdgia yyoui.'

Our gibberish generator turned out quite decent. Now it’s time to make it a Foliant
preprocessor.

Next: Formalizing the Preprocessor

Previous: Introduction

Creating a Preprocessor | .December 12, 2021 60

Formalizing the Preprocessor
A Foliant preprocessor is a Python package of a certain structure. Here’s a list of
requirements for a package to be considered by Foliant a preprocessor:

1. After installing the preprocessor package should appear inside the Foliant package
folder at a path foliant.preprocessors.your_preprocessor.

2. It must be possible to import a class named Preprocessor from your package:

from foliant.preprocessor.your_preprocessor import

Preprocessor

3. The Preprocessor class should (but is not required to) be a subclass of a
foliant.preprocessors.BasePreprocessor class.

— in any case the Preprocessor class must accept the same __init__ argu-
ments as the BasePreprocessor class.

4. The Preprocessor class must define at least the apply method.

Let’s take our gibberish module which we’ve created in the previous chapter and
make it work with Foliant. We will be adding the code into the same module.

According to the requirements above, we first need to create a proper directory struc-
ture. It should look like this:

1 $ tree

2 .└──
3 foliant

4 └── preprocessors

5 └── gibberish.py

6

7 2 directories, 1 file

This is the first requirement satisfied. Now to the rest of them.

We should define a Preprocessor class and ideally subclass it from
BasePreprocessor.

Usually, we start out a new preprocessor from a template containing the boilerplate
code. You can find the full template here.

But to understand the boilerplate code you have to write it at least once, so let’s start
from scratch.

We start by defining the Preprocessor class.

Creating a Preprocessor | .December 12, 2021 61

https://github.com/foliant-docs/foliantcontrib.templates.preprocessor/blob/develop/foliant/cli/init/templates/preprocessor/foliant/preprocessors/%24slug.py

1 from foliant.preprocessors.base import BasePreprocessor

2

3

4 class Preprocessor(BasePreprocessor):

The BasePreprocessor parent class offers some useful attributes and methods,
go ahead and take a look at its source code.

Let’s start writing the class by adding the __init__ method and several class at-
tributes.

1 class Preprocessor(BasePreprocessor):

2 tags = ('gibberish',) # [1]

3 defaults = {'default_size': 10} # [2]

4

5 def __init__(self, *args, **kwargs):

6 super().__init__(*args, **kwargs) # [3]

7

8 self.logger = self.logger.getChild('gibberish') #

[4]

9

10 self.logger.debug(f'Preprocessor inited: {self.

__dict__}') # [5]

1. First, we define the tags which will be captured in the Markdown source. As we’ve
decided in the beginning, we want to process tags that look like <gibberish></

gibberish>, so our tag name is gibberish. We put that into the tags class
attribute which must be a sequence. tuple or list are equally good choices.

2. We will allow the user to define the default size of the generated text in the pre-
processor options. Here we provide the default value of 10 to this option, in case
the user hasn’t supplied it.

3. Running the parent’s __init__method first. It will populate our class with useful
attributes.

4. Using the logger attribute to set up a logger. This line embeds our preprocessor
into the main log file under the name of gibberish.

5. Posting our first log message, which will contain all preprocessor’s attributes for
inspection.

Now let’s write the applymethod. As mentioned above, this method must be present
in all preprocessors. This is the method that Foliant will call to apply the preprocessor.

Creating a Preprocessor | .December 12, 2021 62

https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/base.py

Usually, it subsequently opens each file from the temporary directory and calls the
main processing method to transform their content in the desired way. It’s a good
practice to start and end this method with log messages.

1 def apply(self):

2 self.logger.info('Applying preprocessor Gibberish')

3 for markdown_file_path in self.working_dir.rglob('*.

md'): # [1]

4 with open(markdown_file_path, encoding='utf8')

as markdown_file:

5 content = markdown_file.read() # [2]

6

7 processed_content = self._process_tags(content)

[3]

8

9 if processed_content: # [4]

10 with open(markdown_file_path, 'w') as

markdown_file:

11 markdown_file.write(processed_content)

[5]

12 self.logger.info('Preprocessor Gibberish applied')

1. Scan the temporary directory (the working_dir attribute, which is a pathlib

.Path object, created for us by the parent class) and find all Markdown files in
it.

2. Get the source content of each Markdown file.
3. Process the content with the _process_tags method which we are about to

write next.
4. This step is important. We check if the main processing method actually returned

any content. If the string is empty, it usually means that something went wrong.
Foliant won’t interrupt the build process if one of the preprocessors fails to run. We
don’t want to write empty or broken content into Markdown files, because other
preprocessors still may run after ours even if ours failed.

5. If everything is OK, and our preprocessing function returned some content, we
overwrite the original Markdown file with it.

The apply method defers the actual preprocessing work to the _process_tags

method, so now let’s write it.

Creating a Preprocessor | .December 12, 2021 63

1 def _process_tags(self, content):

2 def sub_tag(match): # [2]

3 tag_options = self.get_options(match.group('

options')) # [3]

4 default_size = self.options['default_size'] # [4]

5 size = tag_options.get('size', default_size) #

[5]

6 return gen_text(size) # [6]

7

8 return self.pattern.sub(sub_tag, content) # [1]

Note the order of the bullet points: we start with the last line of the code above:

1. The pattern is another attribute created by the base class. It is a RegEx pattern
object which will capture the XML tags in the Markdown source. Remember the
tags class attribute we’ve defined in the beginning? pattern will use it to
capture the appropriate tags for our preprocessor. We use the re.sub method of
the pattern which will replace our tag definitions (<gibberish></gibberish
>) in the content with whatever string returns the sub_tag local function.

2. Next, we define the sub_tag local function. This function accepts one argument:
the Match object which was captured by the pattern.

3. We use the handy get_options method of the base class, which takes the op-
tions string of the tag found in the source, and turns it into a dictionary of options.
For example, if the captured tag was <gibberish size="15"></gibberish

>, the options string is size="15". It will be turned into {'size': 15} by
the get_options method.

4. Getting the value of the default_size parameter from the preprocessor op-
tions. The options are stored in self.options dictionary by the base class.
The dictionary is first prepopulated by values from the defaults attribute that
we’ve defined earlier. According to the defaults, if the user hasn’t stated any
options, the default_size will have the value of 10.

5. Getting the size option from the tag options. If options were not stated, we are
using the default_size value as a fallback.

6. Finally, we are using the get_text function from our gibberish generator, which
we’ve written in the previous part of the tutorial. We are returning the string re-
turned from the gen_text function as the result of our sub_tag local function.
This is the text which will replace the <gibberish></gibberish> tag in the
processed Markdown file.

Creating a Preprocessor | .December 12, 2021 64

https://docs.python.org/3/library/re.html#re.sub
https://docs.python.org/3/library/re.html#match-objects

And that’s it! We have all the code required for the preprocessor to work. All is left to
do is to make our package installable and test its work.

Next: Installing and Testing

Previous: Creating the Gibberish Generator

Installing and Testing
Right now our preprocessor folder looks like this.

1 $ tree

2 .└──
3 foliant

4 └── preprocessors

5 └── gibberish.py

6

7 2 directories, 1 file

To make it an installable Python package we need to add a setup.py file to the root
folder.

Here’s an article on creating setup files from the official docs. Usually, we just take
one of the setup.pys from an existing preprocessor as a template or use this official
Foliant snippet.

Here’s what your setup.py may look like.

1 from setuptools import setup

2

3

4 SHORT_DESCRIPTION = 'Gibberish preprocessor for Foliant.' #

[*]

5

6 try:

7 with open('README.md', encoding='utf8') as readme:

8 LONG_DESCRIPTION = readme.read()

9

10 except FileNotFoundError:

11 LONG_DESCRIPTION = SHORT_DESCRIPTION

12

Creating a Preprocessor | .December 12, 2021 65

https://docs.python.org/3/distutils/setupscript.html
https://github.com/foliant-docs/foliantcontrib.templates.preprocessor/blob/develop/setup.py

13

14 setup(

15 name='foliantcontrib.gibberish', # [*]

16 description=SHORT_DESCRIPTION,

17 long_description=LONG_DESCRIPTION,

18 long_description_content_type='text/markdown',

19 version='1.0.0',

20 author='Simon Garfunkel', # [*]

21 author_email='simong@example.com', # [*]

22 url='https://github.com/foliant-docs/foliantcontrib.

gibberish', # [*]

23 packages=['foliant.preprocessors'],

24 license='MIT',

25 platforms='any',

26 install_requires=[

27 'foliant>=1.0.8',

28],

29 classifiers=[

30 "Development Status :: 5 - Production/Stable",

31 "Environment :: Console",

32 "Intended Audience :: Developers",

33 "License :: OSI Approved :: MIT License",

34 "Operating System :: OS Independent",

35 "Programming Language :: Python",

36 "Topic :: Documentation",

37 "Topic :: Utilities",

38]

39)

Lines marked with asterisks you would probably want to change to suit your prepro-
cessor. Also, note that we referred to the contents of the README.md as the full
description of the package. It’s a good time to add a readme for your preprocessor.
Explain what your preprocessor does and what options it has. You may use one of the
official preprocessors for possible readme structure.

Now the folder structure should look like this

1 $ tree

Creating a Preprocessor | .December 12, 2021 66

2 .├──
3 foliant│
4 └── preprocessors│
5 └── gibberish.py├──
6 README.md└──
7 setup.py

8

9 2 directories, 3 files

Time to test if the preprocessor actually works. First, install it by running this com-
mand inside the preprocessor folder.

$ pip3 install .

Create an empty Foliant project using the init command:

1 $ foliant init # creating the empty project

2 Enter the project name: Gibberish Test

3 Generating project... Done────────────────────
4

5 Project "Gibberish Test" created in gibberish-test

6 $ cd gibberish-test # entering the created project folder

7 $ tree # inspecting the project file structure

8 .├──
9 docker-compose.yml├──

10 Dockerfile├──
11 foliant.yml├──
12 README.md├──
13 requirements.txt└──
14 src

15 └── index.md

16

17 1 directory, 6 files

First, let’s add our preprocessor to the foliant.yml.

1 title: Gibberish Test

2

3 + preprocessors:

Creating a Preprocessor | .December 12, 2021 67

4 + - gibberish

5 +

6 chapters:

7 - index.md

Now let’s edit the index.md and use the <gibberish><gibberish> tag a few
times.

1 # Welcome to Gibberish Test

2

3 Here's some gibberish:

4

5 <gibberish></gibberish>

6

7 Here are just two sentences of gibberish:

8

9 <gibberish size="2"></gibberish>

Let’s build our project into the pre target. This target doesn’t create a PDF or a
DOCX, it just returns the preprocessed Markdown text, which perfectly suits our test-
ing needs.

1 $ foliant make pre

2 Parsing config... Done

3 Applying preprocessor gibberish... Done

4 Applying preprocessor _unescape... Done────────────────────
5

6 Result: Gibberish_Test-2021-08-16.pre

Inspect the results

1 $ cat Gibberish_Test-2021-08-16.pre/index.md

2 # Welcome to Gibberish Test

3

4 Here's some gibberish:

5

6 Yxz izyuo sjo iir tewo qvqc etosaeeuo iecaizaso aaeoeuo iyey

. Apavaiqfu eqaaa eecyo ioiiyuoay ah caou iets. Yooyofa

iiynndea yiuqehlq uizu yca. Pi iuld ixuaeqei ousogp yu

Creating a Preprocessor | .December 12, 2021 68

ushggxyq yiia uiuyjo. Ofoemct ciyfuup uufiy avkfeqa ehtjoj

ietwohoo xqgif. Iwohqoeao snf uozlw qeasoqzu gevuywxui ou

xypikyyqu on hrx. Ruagoisia ivga ovzho da oziazioic. Iqeswsg

ouoq ecserixo ueza icykifuzo pipzuyny aid cq ihxiwi eme

eejxwt iuak. Oui goido yduz eeyfahxil dyiya mezifeo iym

xuuvyiy. Iii yucnyyyq eono qyqu uu ioo sqwcjuhip.

7

8 Here are just two sentences of gibberish:

9

10 Lof peuoy iiouy yyau qggedo evuoucaig. Pziqgsg ekiqepyu

laeiridyc.

Looks like everything worked fine. Now let’s set the default_size parameter to
check if preprocessor options work too. Edit the foliant.yml

1 title: Gibberish Test

2

3 preprocessors:

4 - - gibberish

5 + - gibberish:

6 + default_size: 1

7

8 chapters:

9 - index.md

And run the build

1 $ foliant make pre

2 Parsing config... Done

3 Applying preprocessor gibberish... Done

4 Applying preprocessor _unescape... Done────────────────────
5

6 Result: Gibberish_Test-2021-08-16.pre

Now the first <gibberish></gibberish> tag should be replaced with just one
line of text. Let’s check that

1 cat Gibberish_Test-2021-08-16.pre/index.md

2 # Welcome to Gibberish Test

Creating a Preprocessor | .December 12, 2021 69

3

4 Here's some gibberish:

5

6 Jy si zhwtyu acneec qeugeya ax qqofaiu ydyyyxz.

7

8 Here are just two sentences of gibberish:

9

10 Wnuhocx uqny ns. Iu ieuiaea iogyjyfy kl eyyeex agayii aioaac

yacjume.

Everything works as expected. Now you can add a LICENSE and a changelog.md

to your preprocessor folder and publish it in GitHub and pypi, so that others could use
your wonderful creation too!

The repository with full code of Gibberish preprocessor is available here.

Summary
Now you know the basics of creating preprocessors for Foliant. But there’s a lot more
to learn! Study the code of different preprocessors created by our team to find out
different approaches to solving techwriters’ problems. Refer to the Developer’s Refer-
ence for all helper functions, classes and their attributes available for building Foliant
extensions.

When you get comfortable creating simple preprocessors you may find the utils

package useful. It contains different tools which perform common tasks in pre-
processors like dealing with the chapters section in foliant.yml or efficient-
ly combining options from foliant.yml and XML tags. There’s also a powerful
BasePreprocessorExt class which encapsulates some boilerplate code for your
preprocessors and offers advanced tools for warnings output and more.

That’s all for now. We wish you luck in extending Foliant! Send us a message if you
want your preprocessor included in the official Foliant docs.

Previous: Formalizing the Preprocessor

Creating a Preprocessor | .December 12, 2021 70

https://github.com/foliant-docs/preprocessor_tutorial
https://github.com/foliant-docs/foliantcontrib.utils
https://github.com/foliant-docs/foliantcontrib.utils
https://github.com/foliant-docs/foliantcontrib.utils/blob/master/docs/chapters.md
https://github.com/foliant-docs/foliantcontrib.utils/blob/master/docs/combined_options.md
https://github.com/foliant-docs/foliantcontrib.utils/blob/master/docs/preprocessor_ext.md

Architecture And Basic Design
Concepts
Overview
Foliant is an open-source application written in Python.

Foliant has a modular architecture. It consists of three layers:

— Configuration Layer reads Foliant project configuration file and CLI parameters sup-
plied by the user;

— Preprocessing Layer adjusts the Markdown sources before the build;
— Build Layer produces the documentation in the final format.

Each layer is supervised by Foliant Core. Foliant Core is a relatively compact and
rarely updated Python package. It is a dispatcher which manages installed extensions
according to the configuration.

Let’s take a closer look at each layer of Foliant’s architecture.

Architecture And Basic Design Concepts | .December 12, 2021 71

https://raw.githubusercontent.com/foliant-docs/docs/master/src/images/architecture-overview.png
https://github.com/foliant-docs/foliant/

Configuration Layer
At the configuration Layer, Foliant processes the CLI-command and reads the com-
mand arguments, which were supplied by the user. The Main Foliant command is
make, it is the command which builds the documentation project. But there are other
commands which may do other things, for example, display the project’s metadata
(the meta generate command) or generate a new project file structure (the init

command).

Overview | .December 12, 2021 72

https://raw.githubusercontent.com/foliant-docs/docs/master/src/images/architecture-detailed.png

If make command was used, Foliant reads and processes the project configuration
file. At this stage, all installed Configuration Extensions are applied to the project
config.

Preprocessing Layer
At the preprocessing layer, Foliant runs the Preprocessor Pipeline, that was defined
in the config. Each preprocessor is applied to the Markdown source in the specified
order. Preprocessors may:

— call external services, for example, get data from a Swagger API website or an SQL
Database;

— use local files, for example, templates for text generation, or Markdown snippets
for content reuse;

— call external tools, for example, PlantUML to generate diagrams from code, or
ImageMagick to resize images.

Finally, the preprocessor may not use any external services or local files, but do the
processing itself. For example, perform auto-replace in the text or generate a glossary
for the terms in the project.

Build Layer
At the build layer, Foliant runs the Backend, which was specified in the make com-
mand parameters. The Backend produces the documentation in the final format. It
may be a local file like PDF or a directory with static website contents, or the Backend
may upload the result to an external service like Confluence.

Foliant Extensions
As was mentioned above, the main Foliant package is Foliant Core. But Foliant Core it-
self does not build documentation projects, instead it delegates this job to extensions.
The Core package also defines base classes for all types of extensions.

There are 4 types of base Foliant extensions.

— CLI extensions extend Foliant’s command-line interface and provide additional ac-
tions that may be called from the command line. This is always the topmost com-
ponent of any Foliant’s action. foliant make is in fact a CLI extension that builds
projects.

Foliant Extensions | .December 12, 2021 73

— Config extensions allow to customize the project configuration parsing, add custom
YAML tags and new configuration options. For example, MultiProject extension
adds a YAML tag !from which allows to include multiple nested Foliant projects
into a single parent project.

— Preprocessors are modules which apply various transformations to the source Mark-
down content before passing it to a backend. The transformations include:

— replacing parts of content according to specific rules;
— rendering diagrams and schemes from source code;
— embedding content from external files;
— getting data for your documentation project from external services, e.g. remote

Git repositories, Swagger, Testrail, Figma, Sympli, SQL Databases etc.;
— seting high-level semantic relations between different parts of content to pro-

vide smart cross-target links, or restructure single-source documentation auto-
matically and context-dependently;

— running arbitrary external commands.

Each Foliant project may use any number of preprocessors. Preprocessors are ap-
plied sequentially, one after another. The same preprocessor may appear more
than once in the pipeline.

— Backends build the project’s Markdown content into final formats which we call
targets, e.g. PDF files or static sites. Backends may call third-party software to
produce the final documentation or upload your content to an external service,
e.g. Confluence. A single backend may generate multiple targets. Different back-
ends may build the same target. For example, a static site (the site target) can
be built with 3 official backends: MkDocs, Slate, and Aglio. If several of them are
installed, user may specify the certain backend in the foliant make command
or it will be asked interactively.

Project Build Process
The project build process is operated by Foliant CLI extension called make, which is
a part of Foliant Core package.

The steps of the build process

1. User calls a make command specifying the backend and the target he wants to
build, for example:

$ foliant make site --with mkdocs

Project Build Process | .December 12, 2021 74

In this example, the target is site and the backend is mkdocs. --with argu-
ment is optional, make will assume the backend or ask for user input if there are
several options for the target.

2. make launches the project build in the following stages:

1. Configuration parsing. The project configuration file (foliant.yml by de-
fault) is processed by each installed Config extension and saved into the in-
ternal context.

2. Copying sources. The src folder which holds Markdown source files of the
project is copied into a temporary folder (__folianttmp__ by default). Pre-
processors will only affect the copies, leaving the sources intact.

3. Preprocessing. Each preprocessor defined in the project configuration file
is subsequently applied to the temporary folder with copies of Markdown
sources. The preprocessors run in an order in which they are specified in the
preprocessors list, but each backend may implicitly add specific prepro-
cessors to the beginning or the end of this list.

4. Producing output format. The chosen backend takes the Markdown files from
the temporary folder and converts them into the target format.

5. Removing temporary files. If make wasn’t run with --keep-tmp|-k argu-
ment, the temporary folder with preprocessed Markdown sources is removed
from the project dir.

Project Build Process | .December 12, 2021 75

Project Configuration
Configuration for Foliant is kept in a YAML file in the project root. The default filename
is foliant.yml but you can pick a different name by specifying the --config

option:

$ foliant make pdf --config myconf.yml

Config Sections
— Root Options
— chapters
— preprocessors
— backend_config

Root Options
These are the options that are placed at the root of the config file. There are several
built-in options, which are described below, but extensions may introduce their own
root options (for example, AltStructure or EscapeCode and UnescapeCode). Refer to
each extension’s respective docs for details.

Here are all built-in root options:

1 title: My Awesome Project

2 slug: myproj

3 src_dir: src

4 tmp_dir: __folianttmp__

title (string) Project title. It will be used to generate the resulting file name, if
slug option is not defined.

slug (string) Slug is a string which will be used to name the output file or folder
after build. For example, if slug is myproj, the output PDF will be saved into
myproj.pdf. If not defined — title will be used to generate filename.

src_dir (string) Name of the directory with your project’s Markdown source files.
Default: src.

tmp_dir (string) Name of the directory where the intermediate files will be stored
during preprocessor pipeline execution. Default: __folianttmp__.

Project Configuration | .December 12, 2021 76

https://yaml.org/

chapters
(list)

chapters is a list of paths to the Markdown sources which you want to be used in
the project. The paths are specified relative to your src dir.

Here’s a basic chapters list:

1 chapters:

2 - intro.md

3 - definitions.md

4 - tutorial.md

Chapters may be nested with mappings and sublists. These complex structures may
be treated differently by different backends: some may ignore nesting, some may use
it to alter the resulting build. But usually, these two ideas are shared between all
backends:

— only those Markdown files which are mentioned in the chapters list will appear in
the resulting build;

— the order in which chapters are mentioned in the list will be preserved in the re-
sulting build.

Consider this example chapters list:

1 chapters:

2 - intro.md # list item

3 - definitions.md # list item

4 - How To Use This Tutorial: tutorial_help.md # mapping

with one element

5 - Creating Documentation With Foliant: # mapping with

nested list

6 - preprequisites.md

7 - Preparing Config:

8 - root options.md

9 - chapters.md

10 - preprocessors.md

11 - backend_config.md

12 - create_sources.md

13 - building_project.md

Config Sections | .December 12, 2021 77

In this example first two chapters are defined as simple list items, the third chapter
is a mapping with one element, and after that, we see several mappings with nested
lists.

If we were building a PDF document with Pandoc backend or a static site with Slate
backend, this complex chapter structure will be ignored, as if we have supplied a
simple flat list:

1 chapters:

2 - intro.md

3 - definitions.md

4 - tutorial_help.md

5 - preprequisites.md

6 - root options.md

7 - chapters.md

8 - preprocessors.md

9 - backend_config.md

10 - create_sources.md

11 - building_project.md

In any case, we would get a one-file PDF or a one-page site with data from listed
Markdown files in the provided order.

But if we were building a site with MkDocs backend, mappings would become mean-
ingful.

For example, this element:

- How To Use This Tutorial: tutorial_help.md

means “take the source from tutorial_help.md but change its title to How To

Use This Tutorial” in the sidebar.

And this element:

1 - Creating Documentation With Foliant:

2 - preprequisites.md

3 - Preparing Config:

4 - root options.md

5 - chapters.md

6 - preprocessors.md

7 - backend_config.md

Config Sections | .December 12, 2021 78

means “create a subsection Creating Documentation With Foliant in the sidebar and
nest the preprequisites.md chapter inside. Then nest another subsection
Preparing Config within the first one, and nest four other chapters inside of it”.

Refer to each backend’s respective docs for details on how they work with chapters.

preprocessors
(list)

All preprocessors which you want to be used in your project, should be listed under
the preprocessors section:

1 preprocessors:

2 - macros: # options are adjusted

3 macros:

4 ref: <if backends="pandoc">{pandoc}</if><if

backends="mkdocs">{mkdocs}</if>

5 - flags # all options are set to defaults

6 - includes

7 - blockdiag

8 - plantuml:

9 params:

10 config: !path configs/plantuml.cfg

11 - graphviz:

12 format: svg

13 as_image: false

14 params:

15 Gdpi: 0

Each preprocessor has to be put in a separate list item. If you don’t need to set
any options, just put the preprocessor’s name in the item (flags, includes, and
blockdiag in the example above). If you are setting preprocessor options, then
make it a mapping, with key being the preprocessor name, and value — another map-
ping, with preprocessor options. (macros, plantuml, and graphviz in the ex-
ample above).

Refer to each preprocessor’s respective docs for details on which options they have
and how to set them.

Config Sections | .December 12, 2021 79

There are several things you have to keep in mind when building the preprocessors
section:

The order matters

The order, in which the preprocessors are defined in the list, is the order they are run
during the build. For example, if you are using Includes preprocessor to get source
code for a PlantUML scheme like this:

1 <plantuml>

2 <include url="http://example.com/scheme.puml"></include>

3 </plantuml>

then includes must be defined before plantuml in the preprocessor list. Other-
wise, you will get an error from PlantUML when it tries to process <include> tag
instead of the scheme code.

Some preprocessors are especially sensitive to their position in the list (for example,
SuperLinks) and there may even be situations when you will have to put the same
preprocessor in the list twice.

Preprocessors are applied to all files

Generally, preprocessors just ignore the chapters list and apply to all Markdown files
in the src dir. Usually, this is not an issue, but sometimes preprocessor may spend a
long time on the files, which may not even get into the resulting build.

We suggest you keep your src dir tidy and only put there files that are actually get-
ting into the project. The other solution is to use RemoveExcess preprocessor, which
removes all Markdown files, which are not mentioned in the chapters list, from the
temporary directory.

backend_config
(mapping)

Keep all your backend settings in backend_config section:

1 backend_config:

2 pandoc:

3 template: !path template/docs.tex

4 vars:

5 title: *title

Config Sections | .December 12, 2021 80

6 subtitle: ’Users Manual

7 logo: !path template/octopus-black-512.png

8 params:

9 pdf_engine: xelatex

10 listings: true

11 mkdocs:

12 use_title: true

13 use_chapters: true

14 use_headings: true

15 mkdocs.yml:

16 repo_name: foliant-docs/docs

17 theme:

18 name: material

19 custom_dir: !path ./theme/

Unlike preprocessors section, backend_config is not a list but a mapping.
Hence, the order in which you define backends is not important.

Moreover, you can even skip adding a backend into backend_config and still be
able to build a project with it. It will just mean that you are using default settings.

Modifiers
Foliant defines several custom YAML-modifiers, some of which you have already met
in the examples above.

!include
The !include modifier allows inserting content from another YAML-file.

For example, if your chapters list has grown so big, that you want to keep it separate-
ly from the main config, you can put it into chapters.yml file and include it in
foliant.yml:

chapters: !include chapters.yml

Modifiers | .December 12, 2021 81

!path, !project_path, !rel_path
When used in foliant.yml, !path, !project_path, !rel_path all do the same
thing: they resolve the path to an absolute path to make sure the preprocessor or
backend processes this file properly.

It is recommended, that whenever you supply a path to any file in options, to precede
it with the !path modifier:

1 preprocessors:

2 - swaggerdoc:

3 spec_path: !path swagger.yml

4 environment:

5 user_templates: !path widdershins_templates

6 - plantuml:

7 params:

8 config: !path configs/plantuml.cfg

9

10 backend_config:

11 pandoc:

12 template: !path pandoc/tex_templates/main.tex

13 reference_docx: !path pandoc/docx_references/basic.

docx

Why there are three of them then, would you ask? The reason is that all foliant tag
options in Markdown source files are in fact also YAML-strings, which means that you
can supply a list in tag option like this:

1 <jinja2 vars="[a1, a2, a3]">

2 Received the variables!

3

4 {% for var in vars %}

5 ’Ive got a var {{ var }}

6 {% endfor %}

7 </jinja2>

And that’s where !project_path, !rel_path modifiers come in really handy.
Now you can refer to a file that is sitting in the project root, no matter where inside
the src dir your current file is:

Modifiers | .December 12, 2021 82

1 Here are the contents of this ’projects config:

2

3 <include src="!project_path foliant.yml"></include>

By convention, all tag parameters, which accept paths to external files, are considered
to be paths relative to the current file. But if you want to make things more explicit,
you may add the !rel_path tag, which ensures that the path the preprocessor will
get, will be relative to the current file:

1 Here are the contents of the adjacent chapter:

2

3 <include src="!rel_path chapter2.md"></include>

!path modifier, if used in tag parameters, works the same as !project_path

modifier: it returns the absolute path to the file, relative to the project root.

!env
The !env modifier allows you to access environment variables in the config, as well
as in tag options.

It is useful if you don’t want to keep credentials in your config files, for example:

1 # foliant.yml

2

3 preprocessors:

4 dbdoc:

5 host: localhost

6 user: admin

7 password: !env DBA_PASSWORD

Now to build this project add the variable to your command:

DBA_PASSWORD=WQHsaio901SY foliant make pdf

Or, if you are using docker:

docker-compose run --rm -e DBA_PASSWORD=WQHsaio901SY foliant

make pdf

Modifiers | .December 12, 2021 83

Debugging Builds
Building simple documentation projects with Foliant is usually straightforward. But
Foliant is a powerful, customizable, and very flexible tool, capable of turning your
most complex ideas into beautiful documents. If you understand exactly what you
want to achieve, you can formalize it at the project config level, and Foliant will per-
form your task efficiently and precisely.

But sometimes it is difficult to configure all preprocessors and backends properly in
one go. Some settings are pretty subtle and some preprocessors are quite complicat-
ed. The order of applying the preprocessors matters. Some preprocessors may work
unexpectedly when paired with others. Fetching data from external sources may also
become a bottleneck. The list goes on.

Fortunately, Foliant will not ask you to diagnose problems with the car engine without
opening the hood. Foliant provides advanced diagnostic facilities such as:

— detailed event logging in the debug mode;
— the pre backend which does nothing, i.e. just returns the preprocessed Markdown;
— an option to keep the temporary working directory for further analysis.

Notes on Docker Use
In practice, Foliant is more commonly used with Docker.

Here’s a tip for debugging Foliant projects with docker.

It’s useful to add one more service to your project’s default docker-compose.yml.
We will call it bash and it will run containers with an interactive shell:

1 version: '3'

2

3 services:

4 foliant:

5 build:

6 context: ./

7 dockerfile: ./Dockerfile

8 volumes:

9 - ./:/usr/src/app/

10 bash:

11 build:

Debugging Builds | .December 12, 2021 84

12 context: ./

13 dockerfile: ./Dockerfile

14 volumes:

15 - ./:/usr/src/app/

16 entrypoint: /bin/bash

Now you can run a container based on the project’s image with an interactive shell.
To open the shell for root, run:

$ docker-compose run --rm bash

To open shell for a user with the same user ID and group ID as your current user on
the host machine:

$ docker-compose run --user="$(id -u):$(id -g)" --rm bash

All debugging approaches which we will discuss next are represented as native Foliant
commands, but they are applicable for the Docker way too. Just start your commands
with docker-compose run --rm or docker-compose run --user="$(id

-u):$(id -g)" --rm to run them within Docker containers.

Logging
The foliant make ... command runs Foliant in the regular logging mode. In
this mode, Foliant and its extensions will only log events with levels of critical,
error, and warning. Note that some preprocessors may generate a lot of specific
warnings which may or may not indicate that something went wrong. These messages
are usually worth studying anyway though.

The new log file is created for each build, unless there were no errors and warnings.
The logs are stored by default in the project root under the name <unix timestamp

of the build>.log, for example, 1628582527.log. With such a naming con-
vention the log file for the latest build will always be last in alphabetical order. The
location of the log files may be customized by the --logs|-l command-line option.

Debugging Mode

Foliant provides the --debug or -d command-line option which enables the de-
bugging mode. In this mode, Foliant and its extensions log not just events with levels
critical, error and warning, but also events with levels debug and info.
The amount of information you will get from such events depends on the implemen-

Logging | .December 12, 2021 85

tation of a particular extension. Complex preprocessors like Includes usually log their
actions in great detail. The messages of the info level are usually informative: they
may mark the beginning or end of some preprocessor’s work, for example. The mes-
sages of the debug level generally show the status of atomic operations, for example,
reading data from a certain file. These messages often contain the values of the vari-
ables which are important in the current context: paths to files, external commands
that are called, etc. But to make sense of these values prepare to get your hands dirty,
or, in other words, read and understand the code of the corresponding extension.

Here’s an example of a command that tells Foliant to build PDF with Pandoc in debug
mode:

$ foliant make pdf --with pandoc --debug

Each log is a text file that contains a number of lines (records). Each record represents
a single event and consists of 4 separate fields:

— date and time of the event registration;
— context (module name) in which the event was registered;
— event log level: one of CRITICAL, ERROR, WARNING, DEBUG, INFO;
— message text that explains the essence of the event.

For example, the first record of a log usually looks like that:

2020-06-25 09:40:54,419 | flt | INFO |

Build started.

The string flt in the second field means Foliant itself (Foliant Core).

The context is hierarchical. The following record represents an event that is registered
in the Includes preprocessor which was implicitly called by the Flatten preprocessor,
which was implicitly called during project build by Pandoc backend.

2020-06-25 09:40:54,678 | flt.pandoc.flatten.includes |

DEBUG | Processing Markdown file: /usr/src/app/

__folianttmp__/__all__.md

In the next example, Pandoc backend logs the external command that is called to
build needed target:

2020-06-25 09:40:54,684 | flt.pandoc | DEBUG |

PDF generation command: pandoc --template="/foliant_stuff/

pandoc_templates/tex_templates/main.tex" --output "

Logging | .December 12, 2021 86

My_Awesome_Project-1.0-2020-06-25.pdf" --variable title="My

Awesome Project" --variable version="1.0" --variable

subtitle="Description Of My Awesome Project" --variable logo

="/foliant_stuff/pandoc_templates/logos/logo.png" --variable

year="2020" --variable title_page --variable toc --variable

tof --pdf-engine=xelatex --listings -f markdown

__folianttmp__/__all__.md

If you suspect that the command executes wrong, you can run it directly in an inter-
active shell and study the results.

Detailed logging in debug mode allows you to quickly localize problems zooming in
from Foliant itself to a specific Foliant extension, a specific Markdown source file, or
a specific line of code. This takes effort but with practice allows one to solve complex
problems in minimal time.

Debugging extensions
Each Foliant backend takes preprocessed Markdown content and passes it to an exter-
nal command (see Architecture And Basic Design Concepts). For debugging backends
it’s essential to see the content which the backend actually gets.

During the build source files of Foliant project are copied to a temporary working
directory. By default, it is called __folianttmp__/ and located in the “root” direc-
tory of the project. Source Markdown files of the project are kept unchanged during
the build. Any transformations are applied only to the files located in the temporary
working directory.

The pre backend
Foliant Core provides the built-in backend pre which does nothing. More precisely,
this backend makes the pre target. The pre target is obtained simply by copying
the temporary working directory to a subdirectory inside the project root as the result
of the build.

The pre target is essentially the content that comes after all preprocessors are ap-
plied, but before any backend (other than pre) is called.

Determining the cause of the problem

pre backend is convenient to determine the stage of a build which causes problems:

Debugging extensions | .December 12, 2021 87

— configuration stage (reading the configuration file),
— preprocessing stage (transforming the Markdown content with extensions)
— or backend stage (producing the output format).

If you build a pre target and the results seem fine, then there is a problem with your
backend and you have to debug that. You may start with the keep-tmp which we will
discuss next.

If the problem persists in the results, produced by pre, then it’s one of the prepro-
cessors causing trouble or the configuration parser not working properly. In this case,
it’s a nice idea to stick with the pre target during your experiments so you won’t
need to wait each time for the backend to complete producing the target while you
are debugging the build.

To build a Foliant project to the pre target, run the command:

$ foliant make pre

Keeping the project sources
In addition to the pre backend, Foliant Core supports the --keep_tmp

or -k command-line option. By default, the temporary working directory (
__folianttmp__) is removed after the project build. But if the --keep-tmp or
-k option is specified, the temporary working directory will stay in the project root
after build.

This directory will contain the files that are modified by all preprocessors and the
chosen backend.

If you have determined that the backend causes issues, pre won’t help you anymore.
Run the build with -k argument and study the working dir. If it seems fine, then the
problem may be with the command that the backend runs to convert Markdown to a
target format. Time to study logs!

The following command tells Foliant to build PDF with Pandoc, keeping the temporary
working directory after build:

$ foliant make pdf --with pandoc --keep_tmp

Debugging extensions | .December 12, 2021 88

Killing Two Birds With One Stone
Now you know what debugging facilities are provided by Foliant. But we strongly
recommend you make it a rule to start debugging Foliant projects with one universal
shell command:

$ foliant make pre --debug

This command tells Foliant to build the pre target in the debug mode. And this is a
very effective way to get closer to understanding what is wrong with your project.

Killing Two Birds With One Stone | .December 12, 2021 89

Metadata
User’s guide
Metadata in Foliant allows you to assign additional properties to the chapters (Mark-
down files) and sections (parts of a Markdown file) of your project. These properties
will be present in the Markdown sources but won’t be directly rendered in the built
documents. It is up to extensions to make use of these properties and alter your doc-
ument in the desired way.

For instance, Confluence backend uses metadata to upload specific parts of your
project into separate Confluence articles. AltStructure config extension uses metadata
to rearrange the chapters of your project in the final build. TemplateParser preproces-
sor can access the metadata and generate chunks of text using the properties defined
in it.

The foliantcontrib.meta package is required for metadata to work, but you
won’t need to install it directly. Every extension which uses metadata will install it
automatically.

Syntax
There are two ways to define metadata:

— In a YAML Front Matter — to define metadata for a whole chapter,
— Using the <meta></meta> tag to define metadata for a section, as well as for

the chapter.

YAML Front Matter

YAML Front Matter (or YFM for short) must be defined at the very beginning of a
Markdown file. Properties in the YFM are applied to the whole chapter.

1 ---

2 author: John Smith

3 revision_date: 17 August 2021

4 ---

In this example we’ve defined two properties: author and revision_date for
one chapter.

Meta tag

Metadata | .December 12, 2021 90

https://foliant-docs.github.io/docs/backends/confluence/
https://foliant-docs.github.io/docs/config/alt_structure/
https://foliant-docs.github.io/docs/preprocessors/templateparser/
http://www.yaml.org/spec/1.2/spec.html#id2760395

Meta tags may add properties to smaller chunks of a Markdown file, as well as the
whole chapter. If the meta tag is specified at the very beginning of the file, it acts sim-
ilarly to the YAML Front Matter, e.g. is applied to the whole chapter. To add properties
to a smaller chunk of a Markdown file, specify the tag under a heading. The metadata
will be applied to the text under the heading and all nested headings.

1 # Specification

2

3 <meta author="John Smith" revision_date="17 August 2021"></

meta>

4

5 Lorem, ipsum dolor sit amet consectetur adipisicing elit.

Aliquid neque, in, necessitatibus maxime repudiandae cum.

6

7 ## Additional notes

8

9 Lorem ipsum, dolor, sit amet consectetur adipisicing elit.

Incidunt pariatur, vel voluptatum exercitationem quae

cupiditate!

In this example both Specification and Additional notes have the
author and revision_date properties.

Sections
Section is a part of a Markdown file with defined metadata. Section begins with a
Markdown heading (## Heading) and ends before the next heading of the same
or higher level (## Another heading or # Another heading). A part of a
Markdown document is only considered a section if the meta tag is defined in it, with
one exception: the main section.

The main section is defined implicitly for every chapter of your project, even if there’s
no meta tag or YFM in it. In other words, if the Markdown file is specified in the
chapters in foliant.yml, it will appear in the meta registry, with or without
meta properties.

Here’s an illustration of meta sections in a chapter:

User’s guide | .December 12, 2021 91

Special fields
Most meta properties don’t mean anything if no extension is using them. The only
exception right now is the id property. It is the identifier of a section.

IDs are used to distinguish meta sections in the project. They must me unique inside
the project. By default IDs are generated by the Meta engine implicitly, but you may
override them by defining the id property in the section’s metadata. Just make sure
that it is unique.

User’s guide | .December 12, 2021 92

The Meta registry
All extensions that work with metadata have access to the Meta registry. It is a hierar-
chical mapping of all sections in the project with all meta properties defined for each
section.

To take a look at the Meta registry in your project run the meta generate command

1 $ foliant meta generate

2 Generating metadata... Done────────────────────
3

4 Result: meta.yml

The registry is saved into the meta.yml file.

Additional info
Metadata works only for files, mentioned in the chapters section in foliant.yml. All
other files in src dir are ignored and won’t appear in the Meta registry.

When using includes, all metadata from the included content is removed.

Developer’s guide
You can use the powers of metadata in your preprocessors, backends and other exten-
sions. You can define fields with special meaning for your tools and process sections
based on the values in these fields.

Getting metadata
Typical way to work with metadata is to run the load_meta function from the
foliant.meta.generate module.

load_meta(chapters: list, md_root: str or PosixPath = ‘src’) -> Meta

This function returns the Meta registry in a Meta object, which gives access to all
sections and meta-fields in the project.

The required parameter for load_meta is chapters— list of chapters loaded from
foliant.yml

1 >>> from foliant.meta.generate import load_meta

2 >>> meta = load_meta(['index.md'])

Developer’s guide | .December 12, 2021 93

https://foliant-docs.github.io/docs/preprocessors/includes/

You can also specify the md_root parameter. If your tool is a CLI extension,
md_root should point to the project’s src dir. But if you are building a prepro-
cessor or a backend, you would probably want to point it to the __folianttmp__

dir with the current state of the sources.

The Meta class
Meta class holds all project’s metadata and offers few handy methods to work with it.

load_meta_from_file(filename: str or PosixPath)

This method allows you to load meta into the Meta class instance from previously
generated yaml-file. Use it only with an empty Meta class:

1 >>> from foliant.meta.classes import Meta

2 >>> meta = Meta()

3 >>> meta.load_meta_from_file('meta.yml')

iter_sections()

This method returns an iterator which yields project’s meta-sections (Section ob-
jects) in the proper order from the first chapter to the last one.

get_chapter(self, filename: str or PosixPath) -> Chapter

Get chapter (Chapter object) by its path. filename should be path to chapter
relative to the Project dir (or an absolute path).

get_by_id(self, id_: str) -> Section

Get section (Section object) by its id.

chapters

This property holds the list of chapters (Chapter objects).

The Chapter class
Chapter class represents a project’s chapter. It has several important methods which
may be useful for working with metadata.

iter_sections()

This method returns an iterator which yields chapter’s meta-sections (Section ob-
jects) in the proper order from the first chapter to the last one.

get_section_by_offset(offset: int) -> Section:

Developer’s guide | .December 12, 2021 94

This method allows you to get section (Section object) by just pointing to a place
in text. Pointing is performed by specifying offset from the beginning of the file in
offset parameter.

important properties

main_section

A property which holds the main section of the chapter.

name

Chapter’s name as stated in foliant.yml (e.g. 'chapter.md').

filename

Chapter’s filepath string (e.g. 'src/chapter.md').

The Section class
Section represents a meta section.

iter_children()

This method returns an iterator which yields the section’s child sections (Section
objects) in the proper order.

get_source(self, without_meta=True) -> str

Returns section’s source. The section title is also included in the output. If
without_meta is True, all meta tags are cut out from the text.

is_main(self) -> bool

Determine whether the section is a main section or not.

important properties

id

Holds section’s ID.

title

Section’s title.

chapter

Holds a reference to the section’s Chapter object.

parent

Developer’s guide | .December 12, 2021 95

Holds a reference to the section’s parent section (Section object). Main sections
have None in this property.

children

Holds list of section’s children (Section objects) in proper order.

data

Holds a dictionary with meta properties and their values, defined in the <meta> tag
(or the YAML front matter if it is a main section).

level

Section’s level. Main section has level 0, section, defined inside the ### heading
will have the level 3.

start and end

Section’s offsets from the beginning of the Markdown file.

filename

Holds a reference to section’s chapter’s filename for easy access.

Developer’s guide | .December 12, 2021 96

Developer’s Reference
The power of Foliant is in its extensions. Foliant’s ecosystem consists of many beau-
tiful tools for technical writers, but there is still a lot to be done. You are welcome to
contribute to Foliant and its extensions.

This article contains the reference of the main classes and functions available in Fo-
liant Core. As an extension developer, you will be using them to write your own
preprocessors, backends, CLI- and config-extensions.

If you are new to extending Foliant, we suggest you to take a look at the Creating a
Preprocessor tutorial first.

Official Foliant extensions live in Git repositories inside the foliant-docs GitHub group.
Check out their source code to find out different approaches to solving techwriters’
problems.

The repo of Foliant Core is called foliant. The names of Foliant extensions’ repositories
start with the foliantcontrib. prefix. The repo of this documentation project is
called docs.

Core Modules
Core modules live in the foliant GitHub repository. Foliant Core itself does not build
documentation projects, this job is delegated to extensions. But it defines the base
classes for all types of extensions. Each base class offers useful attributes and meth-
ods which are described later in this article. For more info on how Foliant works check
the Architecture And Basic Design Concepts article.

This section lists all modules in the Foliant Core package.

— foliant:
— backends:

— base — defines the base class for all backends;
— pre — simplest backend that returns Markdown content processed by spec-

ified preprocessors as a build result;
— preprocessors:

— base — defines the base class for all preprocessors;
— _unescape — simple preprocessor that escapes pseudo-XML tags (which

are normally recognized by other preprocessors as control sequences) in
code examples. If you want an opening tag to be ignored by any prepro-

Developer’s Reference | .December 12, 2021 97

https://github.com/foliant-docs/
https://github.com/foliant-docs/foliant/
https://github.com/foliant-docs/docs/
https://github.com/foliant-docs/foliant
https://github.com/foliant-docs/foliant/blob/develop/foliant/backends/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/backends/pre.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/_unescape.py

cessor, precede this tag with the < character. The _unescape prepro-
cessor removes these characters before build. Instead of the _unescape

preprocessor, you may use more flexible EscapeCode and UnescapeCode pre-
processors;

— cli— defines the Foliant’s root class Foliant() and the entry_point()

method that is used as a starting point for calling Foliant. Nested modules:
— base — defines the base class for all CLI extensions;
— make — provides the main Foliant’s make command;

— config:
— base — defines the base class for all config extensions;
— include — resolves the !include YAML tag that allows to include the

content of additional YAML-files in Foliant config. More info in the Project
Configuration article;

— path — resolves the !path, !project_path and !rep_path YAML
tags. These tags are useful for specifying file paths in Foliant config or tag
attributes. More info in the Project Configuration article;

— utils — defines basic methods that may be used in different types of exten-
sions.

The make() Method Arguments
The make() method is defined in the foliant.cli.make module. This method
is called when the user runs foliant make ... command. For more info on how
make command works check the Project Build Process article.

The make() method accepts a number of arguments; some of them are then passed
to the backends and preprocessors in the build context:

— target (string) — required resulting target of the current build;
— backend (string, defaults to an empty string) — the name of the backend that is

used for the current build;
— project_path (path, defaults to the current directory path) — the path of top-

level, “root” directory of the current Foliant project;
— config_file_name (string, defaults to foliant.yml) — the file name of the

Foliant project’s config;
— quiet (boolean, default to False) — a flag that prohibits writing to STDOUT;
— keep_tmp (boolean, defaults to False) — a flag that tells Foliant and its ex-

tensions to preserve the temporary working directory, which is used during the
build;

Core Modules | .December 12, 2021 98

https://foliant-docs.github.io/docs/preprocessors/escapecode/
https://github.com/foliant-docs/foliant/blob/develop/foliant/cli/__init__.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/cli/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/cli/make.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/config/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/config/include.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/config/path.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/utils.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/cli/make.py

— debug (boolean, defaults to False) — a flag that tells Foliant and its extensions
to log events of info and debug levels in addition to messages of warning,
error, and critical levels.

Base Classes
Foliant Core provides 4 base classes—one per each type of extension.

— BaseBackend() is defined in the foliant.backends.base module. It is
the base class for all backends. Each newly developed backend should:
— be a module or a package foliant.backends.<your_backend_name>;
— import the class BaseBackend() from the foliant.backends.base

module;
— define its own class called Backend() that is inherited from BaseBackend

();
— define the method called make() within the Backend class.

— BasePreprocessor() is defined in the foliant.preprocessors.base

module. It is the base class for all preprocessors. Each newly developed prepro-
cessor should:
— be a module or a package foliant.preprocessors.<

your_preprocessor_name>;
— import the class BasePreprocessor() from the foliant.

preprocessors.base module;
— define its own class called Preprocessor() that is inherited from

BasePreprocessor();
— define the method called apply() within the class Preprocessor().

— BaseCli() is defined in the foliant.cli.base module. It is the base class
for all CLI extensions. Each newly developed CLI extension should:
— be a module or a package foliant.cli.<your_cli_extension_name>;
— import the class BaseCli() from the foliant.cli.base module;
— define its own class called Cli() that is inherited from BaseCli().

— BaseParser() is defined in the foliant.config.base module. It is the
base class for all config extensions. Each newly developed config extension should:
— be a module or a package foliant.config.<

your_config_extension_name>;
— import the class BaseParser() from the foliant.config.basemodule;
— define its own class called Parser() that is inherited from BaseParser().

Base Classes | .December 12, 2021 99

https://github.com/foliant-docs/foliant/blob/develop/foliant/backends/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/cli/base.py
https://github.com/foliant-docs/foliant/blob/develop/foliant/config/base.py

The BaseBackend() Attributes
— Class attributes:

— targets (tuple of strings) — names of the targets that the backend can build;
— required_preprocessors_before (tuple of strings) — names of the pre-

processors that should be applied before all other preprocessors when this back-
end is used;

— required_preprocessors_after (tuple of strings) — names of prepro-
cessors that should be applied after all other preprocessors when this backend
is used;

— instance variables:
— context — a dictionary that contains the build context:

— project_path (path) — path to the currently built Foliant project;
— config (dictionary) — full config of the currently built Foliant project;
— target (string) — the name of the resulting target;
— backend (string) — the name of the backend that is used in the current

build;
— config — full config of the currently built Foliant project. The same as

context['config'];
— project_path — path to the currently built Foliant project. The same as

context['project_path'];
— working_dir (path) — the path to the temporary working directory that

is used during the build. It is defined as self.project_path / self.

config['tmp_dir'];
— logger — the Logger instance of the current build;
— quiet (boolean) — if True, the backend should not write anything to stdout;
— debug (boolean) — if True, the backend should log the messages of info

and debug levels.

The BasePreprocessor() Attributes
— Class attributes:

— defaults (dictionary) — default values of options that may be overridden in
config;

— tags (tuple of strings) — names of pseudo-XML tags that are recognized by
the preprocessor, without < and > characters;

— instance variables:
— context — a dictionary that contains the build context:

Base Classes | .December 12, 2021 100

https://docs.python.org/3/library/logging.html#logging.Logger

— project_path (path) — path to the currently built Foliant project;
— config (dictionary) — full config of the currently built Foliant project;
— target (string) — the name of the resulting target;
— backend (string) — the name of the backend that is used in the current

build;
— config — full config of the currently built Foliant project. The same as self

.context['config'];
— project_path — path to the currently built Foliant project. The same as

self.context['project_path'];
— working_dir (path) — the path to the temporary working directory that

is used during the build. It is defined as self.project_path / self.

config['tmp_dir'];
— logger — the Logger instance of the current build;
— quiet (boolean) — if True, the backend should not write anything to stdout;
— debug (boolean) — if True, the backend should log the messages of info

and debug levels.
— options (dictionary) — the preprocessor’s options. Is defined as {**self.

defaults, **options}, where options is the data that is read from the
preprocessor’s config in foliant.yml;

— pattern — the regular expression pattern that is used to get components of a
pseudo-XML tag in an easy way. Defined if self.tags is not empty. Provides
the RegEx groups with the following names:
— tag — captured tag name;
— options — captured tag attributes (options) as a string; this string may be

converted into a dictionary by using the self.get_options() method,
which is provided by the base class;

— body— captured tag body, i.e. the content between the opening and closing
tags.

BaseCli() Attributes
— Instance attributes:

— logger — the Logger instance of the current build.

BaseConfig() Attributes
— Instance attributes:

— project_path (path) — the path to the currently built Foliant project;

Base Classes | .December 12, 2021 101

https://docs.python.org/3/library/logging.html#logging.Logger
https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/base.py#L53
https://github.com/foliant-docs/foliant/blob/develop/foliant/preprocessors/base.py#L17
https://docs.python.org/3/library/logging.html#logging.Logger

— config_path (path) — the path to the config file of the currently built Foliant
project;

— logger — the Logger instance of the current build;
— quiet (boolean) — if True, the config extension should not write anything

to stdout.

Base Classes | .December 12, 2021 102

https://docs.python.org/3/library/logging.html#logging.Logger

Backends
Aglio

pypipypi v1.0.0v1.0.0

GitHubGitHub v1.0.0v1.0.0

Aglio Backend for Foliant

Figure 13. Static site built with Aglio backend

Aglio backend generates API documentation from API Blueprint using aglio renderer.

This backend operates the site target.

Note, that aglio is designed to render API Blueprint documents. Blueprint
syntax is very close to that of Markdown and you may be tempted to use

Backends | .December 12, 2021 103

https://pypi.org/project/foliantcontrib.aglio/
https://github.com/foliant-docs/foliantcontrib.aglio
https://apiblueprint.org/
https://github.com/danielgtaylor/aglio

this backend as a general purpose static site generator. It may work in
some cases, but is not guaranteed to work in all of them.

Installation

$ pip install foliantcontrib.aglio

To use this backend Aglio should be installed on your system:

$ npm install -g aglio

To test if you’ve installed aglio properly run the aglio -h command, which should
return you a list of options.

Usage
To generate a static website from your Foliant project run the following command:

1 $ foliant make site --with aglio

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making site... Done────────────────────
6

7 Result: My_Awesome_Project.aglio

Config
You don’t have to put anything in the config to use aglio backend. If it’s installed,
Foliant detects it.

To customize the output, use options in backend_config.aglio section:

1 backend_config:

2 aglio:

3 aglio_path: aglio

4 params:

5 theme-variables: flatly

6 fullWidth: True

aglio_path Path to the aglio binary. Default: aglio

Aglio | .December 12, 2021 104

https://github.com/danielgtaylor/aglio#installation--usage

params Parameters which will be supplied to the aglio command. To get the list
of possible parameters, run aglio -h or check the official docs.

Customizing output

Templates

You can customize the appearance of the static website build by aglio with Jade tem-
plates. Aglio has two built-in templates:

— default — two-column web-page;
— triple — three-column web-page.

To add your own template, follow the instructions in the official docs.

To specify the template add the theme-template field to the params option:

1 backend_config:

2 aglio:

3 params:

4 theme-template: triple

Color scheme

You can customize the color scheme of the website by specifying the color scheme
name in theme-variables param.

Available built-in color schemes:

— default,
— cyborg,
— flatly,
— slate,
— streak.

You can also specify your own scheme in a LESS or CSS file.

1 backend_config:

2 aglio:

3 params:

4 theme-variables: flatly

Aglio | .December 12, 2021 105

https://github.com/danielgtaylor/aglio#installation--usage
http://jade-lang.com/
https://github.com/danielgtaylor/aglio#customizing-layout-templates

Stylesheets

Finally, you can provide custom stylesheets in a LESS or CSS file in theme-style

param:

1 backend_config:

2 aglio:

3 params:

4 theme-style: !path my-style.less

Confluence
pypipypi v0.6.20v0.6.20

GitHubGitHub v0.6.20v0.6.20

Figure 14. Confluence page built with Foliant

Confluence | .December 12, 2021 106

https://pypi.org/project/foliantcontrib.confluence/
https://github.com/foliant-docs/foliantcontrib.confluence

Confluence backend generates confluence articles and uploads them on your conflu-
ence server. It can create and edit pages in Confluence with content based on your
Foliant project.

It also has a feature of restoring the user inline comments, added for the article, even
after the commented fragment was changed.

This backend adds the confluence target for your Foliant make command.

Installation

$ pip install foliantcontrib.confluence

The backend requires Pandoc to be installed on your system. Pandoc is
needed to convert Markdown into HTML.

Usage
To upload a Foliant project to Confluence server use make confluence command:

1 $ foliant make confluence

2 Parsing config... Done

3 Making confluence... Done────────────────────
4

5 Result:

6 https://my_confluence_server.org/pages/viewpage.action?

pageId=123 (Page Title)

Config
You have to set up the correct config for this backend to work properly.

Specify all options in backend_config.confluence section:

1 backend_config:

2 confluence:

3 passfile: confluence_secrets.yml

4 host: 'https://my_confluence_server.org'

5 login: user

6 password: user_password

7 id: 124443

8 title: Title of the page

Confluence | .December 12, 2021 107

https://pandoc.org/

9 space_key: "~user"

10 parent_id: 124442

11 parent_title: Parent

12 test_run: false

13 notify_watchers: false

14 toc: false

15 nohead: false

16 restore_comments: true

17 resolve_if_changed: false

18 pandoc_path: pandoc

19 verify_ssl: true

20 cloud: false

21 attachments:

22 - license.txt

23 - project.pdf

24 codeblocks:

25 ...

passfile Path to YAML-file holding credentials. See details in Supplying Creden-
tials section. Default: confluence_secrets.yml

host Required Host of your confluence server.
login Login of the user who has permissions to create and update pages. If login is

not supplied, it will be prompted during the build.
password Password of the user. If the password is not supplied, it will be prompted

during the build.
id ID of the page where the content will be uploaded. Only for already existing pages
title Title of the page to be created or updated.

Remember that page titles in one space must be unique.

space_key The space key where the page(s) will be created/edited. Only for not
yet existing pages.

parent_id ID of the parent page under which the new one(s) should be created.
Only for not yet existing pages.

parent_title Another way to define the parent of the page. Lower priority than
paren_di. Title of the parent page under which the new one(s) should be
created. The parent should exist under the space_key specified. Only for not yet
existing pages.

Confluence | .December 12, 2021 108

test_run If this option is true, Foliant will prepare the files for uploading to Conflu-
ence, but won’t actually upload them. Use this option for testing your content be-
fore upload. The prepared files can be found in .confluencecache/debug

folder. Default: false

notify_watchers If true — watchers will be notified that the page has changed.
Default: false

toc Set to true to add a table of contents to the beginning of the document. Default:
false

nohead If set to true, first title will be removed from the page. Use it if you are
experiencing duplicate titles. Default: false

restore_comments Attempt to restore inline comments near the same places after
updating the page. Default: true

resolve_if_changed Delete inline comment from the source if the commented
text was changed. This will automatically mark the comment as resolved. De-
fault: false

pandoc_path Path to Pandoc binary (Pandoc is used to convert Markdown into
HTML).

verify_ssl If false, SSL verification will be turned off. Sometimes when dealing
with Confluence servers in Intranets it’s easier to turn this option off rather than
fight with admins. Not recommended to turn off for public servers in production.
Default: true

cloud If true, foliant will try to publish content without HTML code formatting,
which introduces unwanted spaces and newlines when working with Confluence
Cloud.

attachments List of files (relative to project root) which should be attached to the
Confluence page.

codeblocks Configuration for converting Markdown code blocks into code-block
macros. See details in Code blocks processing sections.

User’s guide

Uploading articles

By default, if you specify id or space_key and title in foliant.yml, the whole
project will be built and uploaded to this page.

If you wish to upload separate chapters into separate articles, you need to specify the
respective id or space_key and title in meta section of the chapter.

Confluence | .December 12, 2021 109

Meta section is a YAML-formatted field-value section in the beginning of the docu-
ment, which is defined like this:

1 ---

2 field: value

3 field2: value

4 ---

5

6 Your chapter md-content

or like this:

1 <meta

2 field="value"

3 field2="value">

4 </meta>

5

6 Your chapter md-content

The result of the above examples will be exactly the same. Just remember
that first syntax, with three dashes — will only work if it is in the beginning
of the document. For all other cases use the meta-tag syntax.

If you want to upload a chapter into confluence, add its properties under the
confluence key like this:

1 ---

2 confluence:

3 title: My confluence page

4 space_key: "~user"

5 ---

6

7 You chapter md-content

Important notice! Both modes work together. If you specify the id1

in foliant.yml and id2 in chapter’s meta — the whole project will be
uploaded to the page with id1, and the specific chapter will also be
uploaded to the page with id2.

Confluence | .December 12, 2021 110

Notice You can omit title param in metadata. In this case section head-
ing will be used as a title.

If you want to upload just a part of the chapter, specify meta tag under the heading,
which you want to upload, like this:

1 # My document

2

3 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Explicabo quod omnis ipsam necessitatibus, enim voluptatibus

.

4

5 ## Components

6

7 <meta

8 confluence="

9 title: 'System components'

10 space_key: '~user'

11 ">

12 </meta>

13

14 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Vel, atque!

15 ...

In this example, only the Components section with all its content will be uploaded to
Confluence. The My document heading will be ignored.

Creating pages

If you want a new page to be created for content in your Foliant project, just supply in
foliant.yml the space key and a title that does not yet exist in this space. Remember
that in Confluence page titles are unique inside one space. If you use a title of an
already existing page, the backend will attempt to edit it and replace its content with
your project.

Example config for this situation is:

1 backend_config:

2 confluence:

Confluence | .December 12, 2021 111

3 host: https://my_confluence_server.org

4 login: user

5 password: pass

6 title: My unique title

7 space_key: "~user"

Now if you change the title in your config, confluence will create a new page with the
new title, leaving the old one intact.

If you want to change the title of your page, the answer is in the following section.

Updating pages

Generally to update the page contents you may use the same config you used to create
it (see the previous section). If the page with a specified title exists, it will be updated.

Also, you can just specify the id of an existing page. After build its contents will be
updated.

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: user

5 password: pass

6 id: 124443

This is also the only way to edit a page title. If title param is specified, the backend
will attempt to change the page’s title to the new one:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: user

5 password: pass

6 id: 124443

7 title: New unique title

Confluence | .December 12, 2021 112

Updating part of a page

Confluence backend can also upload an article into the middle of a Confluence page,
leaving all the rest of it intact. To do this you need to add an Anchor into your page
in the place where you want Foliant content to appear.

1. Go to Confluence web interface and open the article.
2. Go to Edit mode.
3. Put the cursor in the position where you want your Foliant content to be inserted

and start typing {anchor to open the macros menu and locate the Anchor macro.
4. Add an anchor with the name foliant.
5. Save the page.

Now if you upload content into this page (see two previous sections), Confluence back-
end will leave all text which was before and after the anchor intact, and add your
Foliant content in the middle.

You can also add two anchors: foliant_start and foliant_end. In this case,
all text between these anchors will be replaced by your Foliant content.

Known issue: right now this mode doesn’t work with layout sections. If
you are using sections, whole content will be overwritten.

Inserting raw confluence tags

If you want to supplement your page with confluence macros or any other storage-
specific HTML, you may do it by wrapping them in the <raw_confluence></

raw_confluence> tag.

For example, if you wish to add a table of contents into the middle of the document
for some reason, you can do something like this:

1 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Odit dolorem nulla quam doloribus delectus voluptate.

2

3 <raw_confluence><ac:structured-macro ac:macro-id="1" ac:name

="toc" ac:schema-version="1"/></raw_confluence>

4

5 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Officiis, laboriosam cumque soluta sequi blanditiis,

voluptatibus quaerat similique nihil debitis repellendus.

Confluence | .December 12, 2021 113

In version 0.6.15 we’ve added an experimental feature of automatically escaping <

ac:...></ac:...> tags for you. So if you want to insert, say, an image with native
Confluence tag ac:image, you don’t have to wrap it in raw_confluence tag, but
keep in mind following caveats:

— singleton ac:... tags are not supported, so <ac:emoticon ac:name="

cross" /> will not work, you will have to provide the closing tag: <ac:

emoticon ac:name="cross"></ac:emoticon>,
— only ac:... tags are escaped right now, other confluence tags like ri:... or

at:... are left as is. If these tags appear inside ac:... tag, it’s ok. If otherwise,
ac:... tag appears inside at:... or ri:... tag, everything will break.

Attaching files

To attach an arbitrary file to Confluence page simply put path to this file in the
attachments parameter in foliant.yml or in meta section.

This will just tell Foliant to attach this file to the page, but if you want to reference it
in text, use the other approach:

Insert Confluence ac:link tag to attachment right inside your Markdown document
and put local path to your file in the ri:filename parameter like this:

1 Presentation in PDF:

2

3 <ac:link>

4 <ri:attachment ri:filename="presentation.pdf"/>

5 </ac:link>

In this case Foliant will upload the presentation.pdf to the Confluence page and
make a link to it in the text. The path in ri:filename parameter should be relative
to current Markdown file, but you can use !path, !project_path modifiers to
reference images relative to project root.

Advanced images

Confluence has an ac:image tag which allows you to transform and format your
attached images:

— resize,
— set alignment,
— add borders,

Confluence | .December 12, 2021 114

— etc.

Since version 0.6.15 you have access to all these features. Now instead of plain
Markdown-image syntax you can use native Confluence image syntax. Add an ac:

image tag as if you were editing page source in Confluence interface and use local
relative path to the image as if you were inserting Markdown-image.

For example, if you have an image defined like this:

![My image](img/picture.png)

and you want to resize it to 600px and align to center, replace it with following tag:

1 <ac:image ac:height="600" ac:align="center">

2 <ri:attachment ri:filename="img/picture.png" />

3 </ac:image>

As you noticed, you should put path to your image right inside the ri:filename

param. This path should be relative to current Markdown file, but you can (since 0.6.16)
use !path, !project_path modifiers to reference images relative to project root.

Here’s a link to Confluence docs about ac:image tag and all possible options.

If you want to upload an external image, you can also use this approach, just insert
that proper ac:image tag, no need for raw_confluence:

1 External image:

2

3

4 <ac:image>

5 <ri:url ri:value="http://confluence.atlassian.com/images/

logo/confluence_48_trans.png" /></ac:image>

Code blocks processing

Since 0.6.9 backend converts Markdown code blocks into Confluence code-block
macros. You can tune the macros appearance by specifying some options in
codeblocks config section of Confluence backend

1 backend_config:

2 confluence:

3 codeblocks: # all are optional

4 theme: django

Confluence | .December 12, 2021 115

https://confluence.atlassian.com/doc/confluence-storage-format-790796544.html#ConfluenceStorageFormat-Images

5 title: Code example

6 linenumbers: false

7 collapse: false

theme Color theme of the code blocks. Should be one of:

— emacs,
— django,
— fadetogrey,
— midnight,
— rdark,
— eclipse,
— confluence.

title Title of the code block.
linenumbers Show line numbers in code blocks. Default: false

collapse Collapse code blocks into a clickable bar. Default: false

Right now Foliant only converts code blocks by backticks/tildes (tabbed code blocks
are ignored for now):

1 This code block will be converted:

2

3 ```python

4 def test2():

5 pass

6 ```

1 And this:

2 ~~~

3 def test3():

4 pass

5 ~~~

Syntax name, defined after backticks/tildes is converted into its Confluence counter-
part. Right now following syntaxes are supported:

— actionscript,
— applescript,

Confluence | .December 12, 2021 116

— bash,
— c,
— c,
— coldfusion,
— cpp,
— cs,
— css,
— delphi,
— diff,
— erlang,
— groovy,
— html,
— java,
— javascript,
— js,
— perl,
— php,
— powershell,
— python,
— xml,
— yaml.

Supplying Credentials

There are several ways to supply credentials for your confluence server.

1. In foliant.yml

The most basic way is just to put credentials in foliant.yml:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: user

5 password: pass

It’s not very secure because foliant.yml is usually visible to everybody in your project’s
git repository.

2. Omit credentials in config

Confluence | .December 12, 2021 117

A slightly more secure way is to remove password or both login and password from
config:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: user

In this case Foliant will prompt for missing credentials during each build:

1 $ foliant make confluence

2 Parsing config... Done

3 Applying preprocessor confluence_final... Done

4 Making confluence...

5

6 !!! User input required !!!

7 Please input password for user:

8 $

3. Using environment variables

Foliant 1.0.12 can access environment variables inside config files with !env modi-
fier.

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: !env CONFLUENCE_USER

5 password: !env CONFLUENCE_PASS

Now you can add these variables into your command:

CONFLUENCE_USER=user CONFLUENCE_PASS=pass foliant make

confluence

Or, if you are using docker:

docker-compose run --rm -e CONFLUENCE_USER=user -e

CONFLUENCE_PASS=pass foliant make confluence

4. Using passfile

Confluence | .December 12, 2021 118

Finally, you can use a passfile. Passfile is a yaml-file which holds all your passwords.
You can keep it out from git-repository by storing it only on your local machine and
production server.

To use passfile, add a passfile option to foliant.yml:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 passfile: confluence_secrets.yaml

The syntax of the passfile is the following:

1 hostname:

2 login: password

For example:

1 https://my_confluence_server.org:

2 user1: wFwG34uK

3 user2: MEUeU3b4

4 https://another_confluence_server.org:

5 admin: adminpass

If there are several records for a specified host in passfile (like in the example above),
Foliant will pick the first one. If you want specific one of them, add the login parameter
to your foliant.yml:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 passfile: confluence_secrets.yaml

5 login: user2

Credits
The following wonderful tools and libraries are used in foliantcontrib.confluence:

— Atlassian Python API wrapper,
— BeautifulSoup,
— PyParsing,
— Pandoc.

Confluence | .December 12, 2021 119

https://github.com/atlassian-api/atlassian-python-api
https://www.crummy.com/software/BeautifulSoup/
https://github.com/pyparsing/pyparsing
https://pandoc.org/

MdToPdf
pypipypi v1.0.0v1.0.0

MdToPdf backend for Foliant
This backend generates a single PDF document from your Foliant project. It uses
md-to-pdf library under the hood.

md-to-pdf supports styling with CSS, automatic syntax highlighting by highlight.js,
and PDF generation with Puppeteer.

MdToPdf backend for Foliant operates the pdf target.

Installation
First install md-to-pdf on your machine:

$ npm install -g md-to-pdf

Then install the backend:

$ pip install foliantcontrib.mdtopdf

Usage

1 $ foliant make pdf --with mdtopdf

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor mdtopdf... Done

5 Applying preprocessor _unescape... Done

6 Making pdf with md-to-pdf... Done────────────────────
7

8 Result: MyProject.pdf

Config
You don’t have to put anything in the config to use MdToPdf backend. If it’s installed,
Foliant will detect it.

MdToPdf | .December 12, 2021 120

https://pypi.org/project/foliantcontrib.mdtopdf/
https://github.com/simonhaenisch/md-to-pdf
https://github.com/highlightjs/highlight.js
https://github.com/GoogleChrome/puppeteer

You can however customize the backend with options in backend_config.

mdtopdf section:

1 backend_config:

2 mdtopdf:

3 mdtopdf_path: md-to-pdf

4 options:

5 stylesheet: https://cdnjs.cloudflare.com/ajax/libs/

github-markdown-css/2.10.0/github-markdown.min.css

6 body_class: markdown-body

7 css: |-

8 .page-break { page-break-after: always; }

9 .markdown-body { font-size: 11px; }

10 .markdown-body pre > code { white-space: pre-wrap; }

mdtopdf_path is the path to md-to-pdf executable. Default: md-to-pdf

options is a mapping of options which then will be converted into JSON and fed to
the md-to-pdf command. For all possible options consult the md-to-pdf docu-
mentation.

MkDocs
pypipypi v1.0.12v1.0.12

GitHubGitHub v1.0.12v1.0.12

MkDocs | .December 12, 2021 121

https://github.com/simonhaenisch/md-to-pdf#usage
https://github.com/simonhaenisch/md-to-pdf#usage
https://pypi.org/project/foliantcontrib.mkdocs/
https://github.com/foliant-docs/foliantcontrib.mkdocs

MkDocs Backend for Foliant

Figure 15. MkDocs site built with Foliant

MkDocs backend lets you build websites from Foliant projects using MkDocs static
site generator.

The backend adds three targets: mkdocs, site, and ghp. The first one converts a
Foliant project into a MkDocs project without building any html files. The second one
builds a standalone website. The last one deploys the website to GitHub Pages.

Installation

$ pip install foliantcontrib.mkdocs

Usage
Convert Foliant project to MkDocs:

1 $ foliant make mkdocs -p my-project✔
2 Parsing config✔
3 Applying preprocessor mkdocs✔
4 Making mkdocs with MkDocs─────────────────────

MkDocs | .December 12, 2021 122

https://mkdocs.org

5

6 Result: My_Project-2017-12-04.mkdocs.src

Build a standalone website:

1 $ foliant make site -p my-project✔
2 Parsing config✔
3 Applying preprocessor mkdocs✔
4 Making site with MkDocs─────────────────────
5

6 Result: My_Project-2017-12-04.mkdocs

Deploy to GitHub Pages:

1 $ foliant make ghp -p my-project✔
2 Parsing config✔
3 Applying preprocessor mkdocs✔
4 Making ghp with MkDocs─────────────────────
5

6 Result: https://account-name.github.io/my-project/

Config
You don’t have to put anything in the config to use MkDocs backend. If it’s installed,
Foliant detects it.

To customize the output, use options in backend_config.mkdocs section:

1 backend_config:

2 mkdocs:

3 mkdocs_path: mkdocs

4 slug: my_awesome_project

5 use_title: true

6 use_chapters: true

7 use_headings: true

8 default_subsection_title: Expand

9 mkdocs.yml:

10 site_name: Custom Title

11 site_url: http://example.com

12 site_author: John Smith

MkDocs | .December 12, 2021 123

mkdocs_path Path to the MkDocs executable. By default, mkdocs command is
run, which implies it’s somewhere in your PATH.

slug Result directory name without suffix (e.g. .mkdocs). Overrides top-level con-
fig option slug.

use_title If true, use title value from foliant.yml as site_name in
mkdocs.yml. It this case, you don’t have to specify site_name in mkdocs.

yml section. If you do, the value from mkdocs.yml section has higher priority.

If false, you must specify site_name manually, otherwise MkDocs will not
be able to build the site.

Default is true.

use_chapters Similar to use_title, but for pages. If true, chapters value
from foliant.yml is used as pages in mkdocs.yml.

use_headings If true, the resulting data of pages section in mkdocs.ymlwill
be updated with the content of top-level headings of source Markdown files.

default_subsection_title Default title of a subsection, i.e. a group of
nested chapters, in case the title is specified as an empty string. If
default_subsection_title is not set in the config, … will be used.

mkdocs.yml Params to be copied into mkdocs.yml file. The params are passed
“as is,” so you should consult with the MkDocs configuration docs.

Preprocessor
MkDocs backend ships with a preprocessor that transforms a Foliant project into a
MkDocs one. Basically, foliant make mkdocs just applies the preprocessor.

The preprocessor is invoked automatically when you run MkDocs backend, so you
don’t have to add it in preprocessors section manually.

However, it’s just a regular preprocessor like any other, so you can call it manually if
necessary:

1 preprocessors:

2 - mkdocs:

3 mkdocs_project_dir_name: mkdocs

mkdocs_project_dir_name Name of the directory for the generated MkDocs
project within the tmp directory.

MkDocs | .December 12, 2021 124

http://www.mkdocs.org/user-guide/configuration/

Troubleshooting

Fenced Code Is Not Rendered in List Items or Blockquotes

MkDocs can’t handle fenced code blocks in blockquotes or list items due to an issue
in Python Markdown.

Unfortunately, nothing can be done about it, either on MkDocs’s or Foliant’s part. As
a workaround, use indented code blocks.

Paragraphs Inside List Items Are Rendered on the Root Level

Check if you use four-space indentation. Python Markdown is stern about this point.

Pandoc
pypipypi v1.1.2v1.1.2

GitHubGitHub v1.1.2v1.1.2

Pandoc | .December 12, 2021 125

https://github.com/Python-Markdown/markdown/issues/53
https://github.com/Python-Markdown/markdown/issues/53
https://daringfireball.net/projects/markdown/syntax#precode
https://pythonhosted.org/Markdown/index.html#differences
https://pypi.org/project/foliantcontrib.pandoc/
https://github.com/foliant-docs/foliantcontrib.pandoc

Pandoc Backend for Foliant

Figure 16. PDF built with Foliant

Pandoc is a Swiss-army knife document converter. It converts almost any format to
any other format: md to pdf, rst to html, adoc to docx, and so on and so on.

Pandoc backend for Foliant adds pdf, docx, odt, epub and tex targets.

Installation

$ pip install foliantcontrib.pandoc

Pandoc | .December 12, 2021 126

http://pandoc.org/

You also need to install Pandoc and TeXLive distribution for your platform.

Usage
Build pdf:

1 $ foliant make pdf -p my-project

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making pdf with Pandoc... Done─────────────────────
5

6 Result: My_Project-2020-12-04.pdf

Build docx:

1 $ foliant make docx -p my-project

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making docx with Pandoc... Done─────────────────────
5

6 Result: My_Project-2020-12-04.docx

Build odt:

1 $ foliant make odt -p my-project

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making odt with Pandoc... Done─────────────────────
5

6 Result: My_Project-2020-12-04.odt

Build docx:

1 $ foliant make epub -p my-project

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making epub with Pandoc... Done─────────────────────
5

6 Result: My_Project-2020-12-04.epub

Build tex (mostly for pdf debugging):

Pandoc | .December 12, 2021 127

1 $ foliant make tex -p my-project

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making docx with Pandoc... Done─────────────────────
5

6 Result: My_Project-2020-12-04.tex

Config
You don’t have to put anything in the config to use Pandoc backend. If it’s installed,
Foliant will detect it.

You can however customize the backend with options in backend_config.

pandoc section:

1 backend_config:

2 pandoc:

3 pandoc_path: pandoc

4 build_whole_project: true

5 template: !path template.tex

6 vars:

7 ...

8 meta:

9 ...

10 reference_docx: !path reference.docx

11 reference_odt: !path reference.odt

12 css: !path epub.css

13 params:

14 ...

15 filters:

16 ...

17 markdown_flavor: markdown

18 markdown_extensions:

19 ...

20 slug: My_Awesome_Custom_Slug

pandoc_path is the path to pandoc executable. By default, it’s assumed to be in
the PATH.

Pandoc | .December 12, 2021 128

build_whole_project added in 1.1.0 If true, whole project will be built into a
single flat document. Default: true.

template is the path to the TeX template to use when building pdf and tex (see
“Templates” in the Pandoc documentation).

Tip

Use !path tag to ensure the value is converted into a valid path
relative to the project directory.

vars is a mapping of template variables and their values. They will be added to
pandoc command as --variable key[=val].

meta is a mapping of document metadata properties and their values. They will be
added to pandoc command as --metadata key[=val].

reference_docx is the path to the reference document to be used when building
docx (see –reference-doc option info in the Pandoc Options documentation).

reference_odt is the path to the reference document to be used when building
odt (see –reference-doc option info in the Pandoc Options documentation).

css is the path to the stylesheets to be used when building epub (see –css option
info in the Pandoc Options documentation).

params are passed to the pandoc command. Params should be defined by their
long names, with dashes replaced with underscores (e.g. --pdf-engine is
defined as pdf_engine).

filters is a list of Pandoc filters to be applied during build.

markdown_flavor is the Markdown flavor assumed in the source. Default is
markdown, Pandoc’s extended Markdown. See “Markdown Variants” in the Pan-
doc documentation.

markdown_extensions is a list of Markdown extensions applied to the Markdown
source. See Pandoc’s Markdown in the Pandoc documentation.

slug is the result file name without suffix (e.g. .pdf). Overrides top-level config
option slug.

Example config:

Pandoc | .December 12, 2021 129

http://pandoc.org/MANUAL.html#templates
https://pandoc.org/MANUAL#options-affecting-specific-writers
https://pandoc.org/MANUAL#options-affecting-specific-writers
https://pandoc.org/MANUAL#options-affecting-specific-writers
http://pandoc.org/MANUAL.html#pandocs-markdown
http://pandoc.org/MANUAL.html#markdown-variants
http://pandoc.org/MANUAL.html#pandocs-markdown

1 backend_config:

2 pandoc:

3 template: !path templates/basic.tex

4 vars:

5 toc: true

6 title: This Is a Title

7 second_title: This Is a Subtitle

8 logo: !path templates/logo.png

9 year: 2020

10 params:

11 pdf_engine: xelatex

12 listings: true

13 number_sections: true

14 markdown_extensions:

15 - simple_tables

16 - fenced_code_blocks

17 - strikeout

Build modes
Since 1.1.0 you can build parts of your project into separate PDFs, along with the main
PDF of the whole project.

If the build_whole_project parameter of Pandoc backend config is true, the
whole project will be built in to a flat document as usual. You can disable it by switch-
ing build_whole_project to false.

You can also build parts of your project into separate documents. To configure such
behavior we will be adding Metadata to chapters or even smaller sections.

To build a chapter into a separate document, add the following meta tag to your
chapter’s source:

1 <meta

2 pandoc="

3 vars:

4 toc: true

5 title: Our Awesome Product

6 second_title: Specifications

7 logo: templates/logo.png

Pandoc | .December 12, 2021 130

https://foliant-docs.github.io/docs/meta/

8 year: 2020

9 "></meta>

10

11 # Specifications

12

13 size: 15

14 weight: 59

15 lifespan: 9

In the example above we have added a meta tag with pandoc field, in which we
have overriden the vars mapping. The pandoc field is essential in this case. This
is how backend determines that we want this chapter built separately. If you don’t
want to override any parameters, you can just add pandoc="true" field.

All parameters which are not overriden in the meta tag will be taken from main config
foliant.yml.

Now, as the pandoc field is present in one of the meta tags in the project, Pandoc
backend should build not one but two documents. Let’s check if it’s true:

1 $ foliant make pdf

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making pdf with Pandoc... Done─────────────────────
5

6 Result:

7 My_Project-2020-12-04.pdf

8 Specifications-2020-12-04.pdf

That’s right, we’ve got the main PDF with whole project and another pdf, with just the
Specifications chapter.

If you wish to build even smaller piece of the project into separate file, add meta tag
under the heading which you want to build:

1 # Specifications

2

3 size: 15

4 weight: 59

5 lifespan: 9

6

Pandoc | .December 12, 2021 131

7 ## Additional info

8

9 <meta

10 pandoc="

11 slug: additional

12 vars:

13 toc: true

14 title: Our Awesome Product

15 second_title: Additional info

16 logo: templates/logo.png

17 year: 2020

18 "></meta>

19

20 Lorem ipsum dolor sit amet consectetur adipisicing elit.

Deleniti quos provident dolores eligendi nam quia sequi et

tempore enim blanditiis, consequatur nostrum nulla dolor

laborum quasi molestiae perspiciatis magni error consectetur

nesciunt eaque veritatis voluptates! Cupiditate illum enim

id recusandae assumenda excepturi odit tempore incidunt,

amet soluta necessitatibus corrupti, aliquam.

In this example only the Additional info section will be built into a separate document.
Notice that we’ve also given it its own slug.

Let’s build again and look at the results:

1 $ foliant make pdf

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Making pdf with Pandoc... Done─────────────────────
5

6 Result:

7 My_Project-2020-12-04.pdf

8 additional.pdf

Pandoc | .December 12, 2021 132

Troubleshooting

Could not convert image …: check that rsvg2pdf is in path

In order to use svg images in pdf, you need to have rsvg-convert executable in
PATH.

On macOS, brew install librsvg does the trick. On Ubuntu, apt install

librsvg2-bin. On Windows, download rsvg-convert.7z (without fontconfig
support), unpack rsvg-convert.exe, and put it anywhere in PATH. For example,
you can put it in the same directory where you run foliant make.

LaTeX listings package does not work correctly with non-ASCII characters, e.g. Cyrillic letters

If you use non-ASCII characters inside backticks in your document, you can see an
error like this:

1 Error producing PDF.

2 ! Undefined control sequence.

3 \lst@arg ->git clone [SSHк-

4 люч]

5 l.627 ...through{\lstinline!git clone [SSHключ-]!}

To fix it, set listings parameter to false:

1 backend_config:

2 pandoc:

3 ...

4 params:

5 pdf_engine: xelatex

6 listings: false

7 number_sections: true

8 ...

Slate
pypipypi v1.0.8v1.0.8

GitHubGitHub v1.0.8v1.0.8

Slate | .December 12, 2021 133

http://opensourcepack.blogspot.ru/2012/06/rsvg-convert-svg-image-conversion-tool.html
https://pypi.org/project/foliantcontrib.slate/
https://github.com/foliant-docs/foliantcontrib.slate
https://github.com/foliant-docs/foliantcontrib.slate

Slate Backend for Foliant

Figure 17. Static site built by Foliant and Slate backend

Slate backend generates API documentation from Markdown using Slate docs gener-
ator.

This backend operates two targets:

— site — build a standalone website;
— slate — generate a slate project out from your Foliant project.

Installation

$ pip install foliantcontrib.slate

To use this backend Slate should be installed in your system. Follow the instruction
in Slate repo.

To test if you’ve installed Slate properly head to the cloned Slate repo in your terminal
and try the command below. You should get similar response.

Slate | .December 12, 2021 134

https://github.com/lord/slate
https://github.com/lord/slate
https://github.com/lord/slate#getting-set-up

1 $ bundle exec middleman

2 == The Middleman is loading

3 == View your site at ...

4 == Inspect your site configuration at ...

Usage
To convert Foliant project to Slate:

1 $ foliant make slate

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done

5 Making slate... Done─────────────────────
6

7 Result: My_Project-2018-09-19.src/

Build a standalone website:

1 $ foliant make site -w slate

2 Parsing config... Done

3 Applying preprocessor flatten... Done

4 Applying preprocessor _unescape... Done─────────────────────
5

6 Result: My_Project-2018-09-19.slate/

Config
You don’t have to put anything in the config to use Slate backend. If it is installed,
Foliant detects it.

To customize the output, use options in backend_config.slate section:

1 backend_config:

2 slate:

3 shards: data/shards

4 header:

5 title: My API documentation

6 language_tabs:

7 - xml: Response example

8 search: true

Slate | .December 12, 2021 135

shards Path to the shards directory relative to Foliant project dir or list of such
paths. Shards allow you to customize Slate’s layout, add scripts etc. More info
on shards in the following section. Default: shards

header Params to be copied into the beginning of Slate main Markdown file index

.html.md. They allow you to change the title of the website, toggle search
and add language tabs. More info in Slate Wiki.

About shards
Shards is just a folder with files which will be copied into the generated Slate project
replacing all files in there. If you follow the Slate project structure you can replace
stylesheets, scripts, images, layouts etc to customize the view of the resulting site.

If shards is a string — it is considered a path to single shards directory relative to
Foliant project dir:

1 slate:

2 shards: 'data/shards'

If shards is a list — each list item is considered as a shards dir. They will be copied
into the Slate project subsequently with replace.

1 slate:

2 shards:

3 - 'common/shards'

4 - 'custom/shards'

5 - 'new_design'

For example, I want to customize standard Slate stylesheets. I look at the Slate repo
and see that they lie in the folder <slate>/source/stylesheets. I create new
stylesheets with the same names as the original ones and put them into my shards
dir like that:

1 shards\

2 source\

3 stylesheets\

4 _variables.scss

5 screen.css.scss

These stylesheets will replace the original ones in the Slate project just before the
website is be baked. So the page will have my styles in the end.

Slate | .December 12, 2021 136

https://github.com/lord/slate/wiki

Preprocessors
General Notes
Most simple preprocessors apply unconditionally to the whole content of each Mark-
down file in the Foliant project. But usually preprocessors look for some specific
pseudo-XML tags in Markdown content. Each preprocessor registers its own set of
tags.

Tags can have attributes and a body. Attributes are usually used to specify some re-
quired or optional parameters. Body is the content that is enclosed between opening
and closing tags; preprocessors usually do something with this content:

<tag attribute_1="value_1" ... attribute_N="value_N">body</tag>

Foliant under 1.0.8 tries to convert each attribute value into a boolean value, a number,
or a string. Attribute values must be enclosed in double quotes (").

Since Foliant 1.0.9, attribute values are processed as YAML. Scalar values are also
converted into boolean values, numbers and strings, but you may specify composite
values that should be transformed into lists or dictionaries. You may also use modifiers
(i.e. YAML tags) that are available in the Foliant project’s config.

!path The string preceded by this modifier should be converted into an existing path
relative to the Foliant project’s top-level (“root”) directory.

!project_path The string preceded by this modifier should be converted into a
path relative to the Foliant project’s top-level (“root”) directory. This path may
be nonexistent.

!rel_path The string preceded by this modifier should be converted into a path
relative to the currently processed Markdown file. This path may be nonexistent.

If you develop a preprocessor that accepts some path, by default it is better to be a
path relative to the currently processed Markdown file.

Also, since Foliant 1.0.9, attribute values may be enclosed into double (") or single (
') quotes.

Admonitions
pypipypi v1.0.1v1.0.1

Preprocessors | .December 12, 2021 137

https://pypi.org/project/foliantcontrib.admonitions/
https://pypi.org/project/foliantcontrib.admonitions/

GitHubGitHub v1.0.1v1.0.1

Admonitions preprocessor for Foliant
Preprocessor which tries to make admonitions syntax available for most backends.

Admonitions are decorated fragments of text which indicate a warning, notice, tip, etc.

We use rST-style syntax for admonitions which is already supported by mkdocs back-
end with admonition extension turned on. This preprocessor makes this syntax
work for pandoc and slate backends.

Installation

$ pip install foliantcontrib.admonitions

Config
Just add admonitions into your preprocessors list. Right now the preprocessor
doesn’t have any options:

1 preprocessors:

2 - admonitions

Usage
Add an admonition to your Markdown file:

1 !!! warning "optional admonition title"

2 Admonition text.

3

4 May be several paragraphs.

Currently supported backends:

— pandoc

— mkdocs*
— slate

Admonitions | .December 12, 2021 138

https://github.com/foliant-docs/foliantcontrib.admonitions
https://python-markdown.github.io/extensions/admonition/

* for admonitions to work in mkdocs, add admonition to the
markdown_extensions section of your mkdocs.yml config:

1 backend_config:

2 mkdocs:

3 mkdocs.yml:

4 markdown_extensions:

5 - admonition

Notes for slate

Slate has its own admonitions syntax of three types: notice (blue notes), warning
(red warnings) and success (green notes). If another type is supplied, slate draws a
blue note but without the “i” icon.

Admonitions preprocessor transforms some of the general admonition types into
slate’s for convenience (so you could use error type to display same kind of note in
both slate and mkdocs). These translations are indicated in the table below:

original type translates to

error warning
danger warning
caution warning
info notice
note notice
tip notice
hint notice

Anchors
pypipypi v1.0.7v1.0.7

GitHubGitHub v1.0.7v1.0.7

Anchors | .December 12, 2021 139

https://pypi.org/project/foliantcontrib.anchors/
https://github.com/foliant-docs/foliantcontrib.anchors

Anchors
Preprocessor which allows to use arbitrary anchors in Foliant documents.

Installation

$ pip install foliantcontrib.anchors

Config
To enable the preprocessor, add anchors to preprocessors section in the project config:

1 preprocessors:

2 - anchors

The preprocessor has some options, but most probably you won’t need any of them:

1 preprocessors:

2 - anchors:

3 element: ''

4 tex: False

5 anchors: True

6 custom_ids: False

element Template of an HTML-element which will be placed instead of the <

anchor> tag. In this template {anchor} will be replaced with the tag con-
tents. Ignored when tex is True. Default: '</

span>'

tex If this option is True, preprocessor will try to use TeX-language anchors: \

hypertarget{anchor}{}. Default: False

Notice, this option will work only with pdf target. For all other targets
it is set to False.

anchors If this options is True, anchors tag will be processed. Turn off if you only
want to process custom IDs. Default: True

custom_ids Since version 1.0.5 preprocessor Anchors can also process Pandoc-
style custom IDs. Set this option to True to do that. Default: False.

Usage
anchors

Anchors | .December 12, 2021 140

Just add an anchor tag to some place and then use an ordinary Markdown-link to
this anchor:

1 ...

2

3 <anchor>limitation</anchor>

4 Some important notice about system limitation.

5

6 ...

7

8 Don't forget about [limitation](#limitation)!

You can also place anchors in the middle of paragraph:

1 Lorem ipsum dolor sit amet, consectetur adipisicing elit.<

anchor>middle</anchor> Molestiae illum iusto, sequi magnam

consequatur porro iste facere at fugiat est corrupti dolorum

quidem sapiente pariatur rem, alias unde! Iste, aliquam.

2

3 [Go to the middle of the paragraph](#middle)

You can place anchors inside tables:

1 Name | Age | Weight

2 ---- | --- | ------

3 Max | 17 | 60

4 Jane | 98 | 12

5 John | 10 | 40

6 Katy | 54 | 54

7 Mike <anchor>Mike</anchor>| 22 | 299

8 Cinty| 25 | 42

9

10 ...

11

12 Something's wrong with Mike, [look](#Mike)!

custom IDs

Anchors | .December 12, 2021 141

Since version 1.0.5 preprocessor Anchors can also process Pandoc-style custom head-
ing identifiers (previously you had to use CustomIDs preprocessor for that purpose).
To use this function, turn on the custom_ids option in your foliant.yml:

1 preprocessors:

2 anchors:

3 ...

4 custom_ids: True

Then add custom identifiers to your headings:

1 # My heading {#foo}

2

3 Lorem ipsum, dolor sit amet consectetur adipisicing elit.

Omnis non vitae placeat sapiente reprehenderit officia.

After processing your text will be look like this:

1

2

3 # My heading

4

5 Lorem ipsum, dolor sit amet consectetur adipisicing elit.

Omnis non vitae placeat sapiente reprehenderit officia.

Additional info
1. Anchors are case sensitive

Markdown and MarkDown are two different anchors.

2. Anchors should be unique

You can’t use two anchors with the same name in one document.

If preprocessor notices repeating anchors in one md-file it will throw you a warning.
If you are building a flat document (e.g. PDF or docx with Pandoc), you will receive
the warning even if anchor repeats in different md-files.

3. Anchors may conflict with headers

Headers are usually assigned anchors of their own. Be careful, your anchors may
conflict with them.

Anchors | .December 12, 2021 142

https://pandoc.org/MANUAL.html#heading-identifiers
https://pandoc.org/MANUAL.html#heading-identifiers
https://foliant-docs.github.io/docs/preprocessors/customids/

Preprocessor will try to detect if you are using anchor which is already taken by the
header and warn you in console.

4. Some symbols are restricted

You can’t use these symbols in anchors:

[]<>\"

Also you can’t use space.

5. But a lot of other symbols are available

All these are valid anchors:

1 <anchor>!important!</anchor>

2 <anchor>_anchor_</anchor>

3 <anchor>section(1)</anchor>

4 <anchor>section/1/</anchor>

5 <anchor>anchor1</anchor>

6 <anchor>about:info</anchor>

7 <anchor>test'1';</anchor>

8 <anchorякорь></anchor>

9 <anchor�></anchor>

Notice for Mkdocs
In many Mkdocs themes the top menu lays over the text with absolute position. In
this situation all anchors will be hidden by the menu.

Possible solution is to change the element option for your anchors to have a vertical
offset. Example config:

1 preprocessors:

2 - anchors:

3 element: '<span style="display:block; margin:-3.1rem

; padding:3.1rem;" id="{anchor}">'

Or, even better, you can assign your anchor a class in element and add these rules
to your custom mkdocs styles.

Anchors | .December 12, 2021 143

APIReferences
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

APIReferences Preprocessor for Foliant
APIReferences is a successor of APILinks preprocessor with slightly
changed configuration syntax and completely rewritten insides. APILinks
is now deprecated, please use APIReferences instead.

Preprocessor replaces API references in markdown files with links to corresponding
method description on the API documentation web-page.

What is it for?
Say, you have API documentation hosted at the url http://example.com/api-docs

It may be a Swagger UI website or just some static one-page site (like Slate).

If you have a site with API docs, you probably reference them from time in your other
documents:

To authenticate user use API method `POST /user/authenticate

`.

We thought, how cool it’d be if this fragment: ‘POST /user/authenticate‘ automatically
transformed into a URL of this method’s description on your API docs website:

To authenticate user use API method [POST user/authenticate

](http://example.com/api-docs/#post-user-authenticate).

That’s exactly what APIReferences does.

How does it work?
The purpose of APIReferences is to convert references into links. In the ex-
ample above ‘ POST /user/authenticate‘ is a reference, and [POST

APIReferences | .December 12, 2021 144

https://pypi.org/project/foliantcontrib.apireferences/
https://github.com/foliant-docs/foliantcontrib.apireferences
https://swagger.io/tools/swagger-ui/
https://github.com/slatedocs/slate

user/authenticate](http://example.com/api-docs/#post-user-

authenticate) is a Markdown link, the result of APIReferences’ work.

The resulting link URL (http://example.com/api-docs/#get-user-authenticate) always
consists of two parts: {url}{anchor}. url is static and is set in config, but
anchor differs for each method. Open your API documentation website and look for
HTML elements with id attribute near method description sections. When you add
this id to the website’s URL with number sign # (we call this combination an anchor),
your browser scrolls the page to this exact element.

The tricky part is to determine which anchor should be added to the website’s URL
for each method. APIReferences offers several ways to do that, we call these ways
modes (which are supplied in the mode parameter). It’s up to you to choose the most
suitable mode for your API website.

Here are available modes with their short descriptions. Detailed descriptions and
examples are in the User Guide below.

1. Generating anchors

Mode option: generate_anchor

Convert reference into an anchor without checking the website.

2. Find anchor

Mode option: find_by_anchor

Parse API website and collect all ids from specific tags. Then convert reference into
an anchor and check whether the converted anchor is present among these ids.

3. Find tag content

Mode option: find_by_tag_content

This mode searches not by tag ids but by tag content (<tag id="id">content</

tag>) Parse API website and collect all tags from the specified list, which have ids
and text content. The content to search is constructed from the reference. If the tag
is found, return a link to its id.

4. Find method in swagger spec for SwaggerUI

Mode option: find_for_swagger

Parse the swagger spec file and find the referenced method. The anchor is then con-
structed by a template. This mode will work for SwaggerUI websites.

5. Find method in swagger spec for Redoc

APIReferences | .December 12, 2021 145

Mode option: find_for_redoc

Parse the swagger spec file and find the referenced method. The anchor is then con-
structed by a template. This mode will work for Redoc websites.

APIReferences is a highly customizable preprocessor. You can tune almost anything
about reference conversion.

For details look through the following sections.

Glossary:

— reference — reference to an API method in the source file. The one to be replaced
with the link, e.g. GET user/config

— verb — HTTP method, e.g. GET, POST, etc.
— command — resource used to represent method on the API documentation web-

page, e.g. /service/healthcheck.
— endpoint prefix — A prefix from server root to the command. If the command is

/user/status and full resource is /api/v0/user/satus then the endpoint
prefix should be stated /api/v0. In references you can use either full resource
({endpoint_prefix}/{command}) or just the command. APIReferences will
sort it out for you.

— output — string, which will replace the reference.
— tag content — plain text between the tags, for example <tag>Tag content</

tag>.
— anchor — web-element id with leading number sign, for example #get-user-

config. Adding the anchor to the end of the web URL will make a browser scroll
to the specified web element.

— mode — the way APIReferences will determine correct anchors to add to website
URLs.

Quick Recipes

Recipe 1: find by tag content

We want reference ‘ GET /user/status‘ to be pointed at this element on our API
website:

<h2 id="get-user-status">Operation GET /user/status</h2>

Minimal sufficiant foliant.yml:

APIReferences | .December 12, 2021 146

1 preprocessors:

2 apireferences:

3 API:

4 My-API:

5 mode: find_by_tag_content

6 url: http://example.com/api # path to your

API website

7 content_template: 'Operation {verb} {command

}'

‘ GET /user/status‘ -> GET /user/status

Recipe 2: find by tag id

The task is the same as in Recipe 1. We want reference ‘ GET /user/status‘ to be
pointed at this element on our API website:

<h2 id="get-user-status">Operation GET /user/status</h2>

Minimal sufficiant foliant.yml:

1 preprocessors:

2 apireferences:

3 API:

4 My-API:

5 mode: find_by_anchor

6 url: http://example.com/api # path to your

API website

7 anchor_template: '{verb} {command}'

8 anchor_converter: slate

‘ GET /user/status‘ -> GET /user/status

Recipe 3: generate tag id

The task is the same as in Recipes 1 and 2, but this time you don’t have access to
API website at the time of building foliant project. We want reference ‘ GET /user/

status‘ to be pointed at this element on our API website:

<h2 id="get-user-status">Operation GET /user/status</h2>

APIReferences | .December 12, 2021 147

http://example.com/api#get-user-status
http://example.com/api#get-user-status

Minimal sufficiant foliant.yml:

1 preprocessors:

2 apireferences:

3 API:

4 My-API:

5 mode: generate_anchor

6 url: http://example.com/api # path to your

API website

7 anchor_template: '{verb} {command}'

8 anchor_converter: slate

‘ GET /user/status‘ -> GET /user/status

Recipe 4: find link for SwaggerUI

We have a SwaggerUI website and we need to find link to the method by reference ‘
GET /user/status“.

Method anchors on SwaggerUI consist of tag and operationId, both of which are not
present in our reference. APIReferences can find them for you in the spec file. Let’s
assume that correct tag and operationId are usertag and getStatus.

Minimal sufficiant foliant.yml:

1 preprocessors:

2 apireferences:

3 API:

4 My-API:

5 mode: generate_for_swagger

6 url: http://example.com/swagger_ui # path

to your API website

7 spec: !path swagger.json # path or direct

url to OpenAPI spec

‘ GET /user/status‘ -> GET /user/status

Installation

$ pip install foliantcontrib.apireferences

APIReferences | .December 12, 2021 148

http://example.com/api#get-user-status
http://example.com/swagger_ui#/usertag/getStatus

Config
To enable the preprocessor, add apireferences to preprocessors section in
the project config:

1 preprocessors:

2 - apireferences

The preprocessor has a lot of options. For your convenience, the required options
are marked (required); and those options which are used in customization are marked
(optional). Most likely you will need just one or two of the latter.

1 preprocessors:

2 - apireferences:

3 targets: # optional. default: []

4 - site

5 trim_if_targets: # optional. default: []

6 - pdf

7 prefix_to_ignore: Ignore # optional

8 warning_level: 2 # optional

9 reference: # optional

10 - regex: *ref_pattern

11 only_with_prefixes: false

12 only_defined_prefixes: false

13 output_template: '[{verb} {command}]({url})'

14 trim_template: '`{verb} {command}`'

15 - regex: *another_ref_pattern # second reference

config. Unlisted options are default

16 output_template: '**{verb} {command}**'

17 API: # below are examples for each mode

18 Client-API: # reference prefix

19 mode: generate_anchor

20 url: http://example.com/api/client

21 anchor_template: '{verb} {command}'

22 anchor_converter: pandoc # optional

23 endpoint_prefix: /api/v1 # optional

24 Admin-API:

25 mode: find_by_anchor

26 url: http://example.com/api/admin

APIReferences | .December 12, 2021 149

27 anchor_template: '{verb} {command}'

28 anchor_converter: pandoc # optional

29 endpoint_prefix: /api/v1 # optional

30 tags: ['h1', 'h2', 'h3', 'h4'] # optional

31 login: login # optional

32 password: password # optional

33 External-API:

34 mode: find_by_tag_content

35 url: http://example.com/api/external

36 content_template: '{verb} {command}'

37 endpoint_prefix: /api/v1 # optional

38 tags: ['h1', 'h2', 'h3', 'h4'] # optional

39 login: login # optional

40 password: password # optional

41 Inernal-API:

42 mode: find_for_swagger

43 url: http://example.com/api/swagger-ui

44 anchor_template: '/{tag}/{operation_id}'

45 anchor_converter: no-transform

46 endpoint_prefix: /api/v1 # optional

47 login: login # optional

48 password: password # optional

targets (optional) List of supported targets for foliant make command. If tar-
get is not listed here — preprocessor won’t be applied. If the list is empty —
preprocessor will be applied for any target. Default: []

trim_if_targets (optional) List of targets for foliant make command for
which the prefixes from all references in the text will be cut out. Default: []

Only those references whose prefixes are defined in the API section (de-
scribed below) are affected by this option. All references with unlisted
prefixes will not be trimmed.

prefix_to_ignore (optional) A default prefix for ignoring references. If APIRef-
erences meets a reference with this prefix it leaves it unchanged. Default:
Ignore

APIReferences | .December 12, 2021 150

warning_level (optional) 2 — show all warnings for not found references; 1 —
show only warnings for not found prefixed references; 0— don’t show warnings
about not found references. Default: 2

reference (optional) List of dictionaries. A subsection for listing all the types of
references you are going to catch in the text, and their properties. Options for
this section are listed below.

All reference properties have defaults. If any of them are missing in
the config, the defaults will be used. If reference section is omitted,
APIReferences will use default values.

Reference options

regex (optional) regular expression used to catch references in the source. Look for
details in the Capturing References section. Default:

`((?P<prefix>[\w-]+):\s*)?(?P<verb>OPTIONS|GET|HEAD|POST|PUT

|DELETE|TRACE|CONNECT|PATCH|LINK|UNLINK)\s+(?P<command>\S+)`

only_with_prefixes (optional) if this is true, only references with prefix will
be transformed. Ordinary links like GET user/info will be ignored. Default:
false

only_defined_prefixes (optional) if this is true all references whose prefix
is not listed in the API section (described below) will be ignored. References
without prefixes are not affected by this option. Default: false.

output_template (optional) A template string describing the output which will
replace the reference. More info in the Customizing Output section. Default:
'[{verb} {command}]({url})'

trim_template (optional) Only for targets listed in trim_if_targets option.
Tune this template if you want to customize how APIReferences cuts out prefixes.
The reference will be replaced with text based on this template. Default: '`{

verb} {command}`'

APIReferences | .December 12, 2021 151

API (required) A subsection for listing APIs and their properties. Define a separate
subsection for each API here. The section name represents the API name and,
at the same time, the prefix used in the references. You need to add at least one
API subsection for the preprocessor to work.

API properties

The list of options and some default values differ for each mode.

mode (required) API mode, which determines how references are collect-
ed. Available modes: generate_anchor, find_by_anchor,
find_by_tag_content, find_for_swagger, find_for_redoc

.

generate_anchor mode

url (required) An API documentation web-page URL. It will be used to construct the
full link to the method.

anchor_template (required) A template string describing the format of the an-
chors in the API documentation web-page. You can use placeholders in {curly
braces}, with names of the groups from the reference regex. Example: 'user

-content {verb} {command}'.
anchor_converter (optional) anchor converter from this list. Determines how

string GET /user/status is converted into get-userstatus or get-

user-status etc. List of available converters. Default: pandoc

endpoint_prefix (optional) The endpoint prefix from the server root to API meth-
ods. If is stated — APIReferences can divide the command in the reference and
search for it more accurately. Also, you could use it in templates. More info in
the Commands and Endpoint Prefixes section. Default: ''

find_by_anchor mode

url (required) An API documentation web-page URL. It will be used to construct the
full link to the method. In this mode, it is also being parsed to check whether
the generated anchor is present on the page.

anchor_template (required) A template string describing the format of the an-
chors in the API documentation web-page. You can use placeholders in {curly
braces}, with names of the groups in the reference regex. Example: 'user-

content {verb} {command}'.

APIReferences | .December 12, 2021 152

https://github.com/foliant-docs/foliantcontrib.utils.header_anchors#to_id
https://github.com/foliant-docs/foliantcontrib.utils.header_anchors#to_id

anchor_converter (optional) anchor converter from this list. Determines how
string GET /user/status is converted into get-userstatus or get-

user-status etc. Default: pandoc

endpoint_prefix (optional) The endpoint prefix from the server root to API meth-
ods. If is stated — APIReferences can divide the command in the reference and
search for it more accurately. Also, you could use it in templates. More info in
the Commands and Endpoint Prefixes section. Default: ''

tags (optional) list of HTML tags which will be parsed out from the page and
searched for ids. Default: ['h1', 'h2', 'h3', 'h4']

login (optional) Login for basic authentication if present on your API site.
password (optional) Password for basic authentication if present on your API site.

find_by_tag_content mode

url (required) An API documentation web-page URL. It will be used to construct the
full link to the method. In this mode, it is also being parsed to check whether
the generated anchor is present on the page.

content_template (required) A template string describing the format of the tag
content in the API documentation web-page. You can use placeholders in {curly
braces}, with names of the groups in the reference regex. Example: '{verb}

{command}'.
endpoint_prefix (optional) The endpoint prefix from the server root to API meth-

ods. If is stated — APIReferences can divide the command in the reference and
search for it more accurately. Also you could use it in templates. More info in
the Commands and Endpoint Prefixes section. Default: ''

tags (optional) list of HTML tags which will be parsed out from the page and
searched for ids. Default: ['h1', 'h2', 'h3', 'h4']

login (optional) Login for basic authentication if present on your API site.
password (optional) Password for basic authentication if present on your API site.

find_for_swagger mode

url (required) An API documentation web-page URL. It will be used to construct the
full link to the method.

spec (required) URL or local path to OpenAPI specification file.
anchor_template (optional) A template string describing the format of the an-

chors in the API documentation web-page. You can use placeholders in {curly

APIReferences | .December 12, 2021 153

https://github.com/foliant-docs/foliantcontrib.utils.header_anchors#to_id

braces}, with names of the groups in the reference regex. In this mode, you can
also use two additional placeholders: {tag} and {operation_id}. Default:
'/{tag}/{operation_id}'.

endpoint_prefix (optional) The endpoint prefix from the server root to API meth-
ods. You may use it in output template. Default: ''

login (optional) Login for basic authentication if present on your API site.
password (optional) Password for basic authentication if present on your API site.

find_for_redoc mode

url (required) An API documentation web-page URL. It will be used to construct the
full link to the method.

spec (required) URL or local path to OpenAPI specification file.
anchor_template (optional) A template string describing the format of the an-

chors in the API documentation web-page. You can use placeholders in {curly
braces}, with names of the groups in the reference regex. In this mode, you can
also use two additional placeholders: {tag} and {operation_id}. Default:
'operation/{operation_id}'.

endpoint_prefix (optional) The endpoint prefix from the server root to API meth-
ods. You may use it in output template. Default: ''

login (optional) Login for basic authentication if present on your API site.
password (optional) Password for basic authentication if present on your API site.

User guide
The purpose of APIReferences is to convert references into Markdown links.

Reference is a chunk of text in your Markdown source which will be parsed by APIRef-
erences, separated into groups, and converted into a link. An example of a reference
is ‘ GET /user/authenticate‘. APIReferences uses Regular Expressions to find
the reference and split into groups. You can supply your own regular expression in
reference -> regex param (details in Capturing References section below). If
you are using the default one, the reference from the example above will be split into
two groups:

— verb: GET,
— command: /user/authenticate.

These groups then will be used to find the referenced method on the API website and
also to construct an output string.

APIReferences | .December 12, 2021 154

For example, with find_by_tag_content mode (see the detailed description of
all modes below) APIReferences will use content_template from API configura-
tion to construct a tag content and search for it on the API website. If the content
template is '{verb} {command}', then the constructed content for the example
above will be GET /user/authenticate. APIReferences will search for a tag
with such content on the page and get its id.

The found tag may be <h2 id="get-userauthenticate">GET /user/

authenticate</h2>. APIReferences will take the id from this tag and use
it as an anchor to the link: #get-userauthenticate. Then it will add
the API website path and here’s your url: http://example.com/api/#get-

userauthenticate.

Now, when APILink has the url of the method description, it can construct an
output string. The output string is formed by a template, stated in reference
output_template param. This template contains placeholders, which correspond
to the reference groups with an addition of {url} placeholder, which contains the
url formed above.

If the output template is '[{verb} {command}]({url})', then the output
string for our example will be:

[GET /user/authenticate](http://example.com/api/#get-

userauthenticate).

That’s it, we’ve turned our reference into a Markdown link:

‘ GET /user/authenticate‘ -> [GET /user/authenticate](http://

example.com/api/#get-userauthenticate).

That’s the big picture. Now let’s start with exploring different modes by means of
which APIReferences captures references on API websites and transforms them into
links.

API Modes
As mentioned above, APIReferences takes a reference from your markdown source and
splits it into groups. It then uses these groups to find the correct id on the API website.
How this search is performed is determined by API Mode. It can search for a specific
tag on the page by tag content or by its id; it can also search for the operation in an
OpenAPI specification file or just construct an id without any checks, depending on
the mode you’ve chosen. The mode is specified in API -> <api name> -> mode

config option.

APIReferences | .December 12, 2021 155

generate_anchor mode

generate_anchor is the simplest mode. It just generates the anchor basing on the
anchor_template parameter. It doesn’t perform any checks on the API website and
doesn’t even require the website to be reachable at the time of building your Foliant
project.

Let’s assume that your API website code looks like this:

1 ...

2 <h2 id="user-content-get-userlogin">GET /user/status</h2>

3 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

4

5 <h2 id="user-content-get-apiv2adminstatus">GET /api/v2/admin

/status</h2>

6 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

7 ...

APIReferences config in your foliant.yml in this case may look like this:

1 preprocessors:

2 apireferences:

3 API:

4 My-API:

5 mode: generate_anchor

6 url: http://example.com/api

7 anchor_template: 'user content {verb} {

command}'

8 anchor_converter: pandoc

As you may have noticed, there’s no reference section in the example above. That’s
because we will be using default values for the reference.

Now let’s reference a GET /user/status method in our Markdown source:

To find out user's status use `My-API: GET /user/status`

method.

APIReferences | .December 12, 2021 156

Note that for generate_anchor mode, the API prefix (My-API in our
case) is required in the reference. More info about prefixes in Handling
Multiple APIs section.

APIReferences will notice a reference mentioned in our markdown: ‘ My-API: GET

/user/status‘. It will capture it and split into three groups:

— prefix: My-API,
— verb: GET,
— command: /user/status.

Then it will pass it to the anchor template 'user content {verb} {command

}' which we’ve stated in our config, and this will result in a string:

'user content GET /user/status'

After that APIReferences will convert this string into an id with anchor converter.
We’ve chosen pandoc converter in our config, which will turn the string into this:
user-content-getuserstatus. That’s exactly the id we needed, look an the
webpage source:

<h2 id="user-content-get-userstatus">GET /user/status</h2>

APIReferences will add this id to our API url (which we’ve stated in config) to form a
link: http://example.com/api#user-content-get-userstatus.

Finally, it’s time to construct a Markdown link. APIReferences takes an
output_template from the reference config (which is omitted in our example fo-
liant.yml because we are using defaults): '[{verb} {command}]({url})'.

Placeholders in the output template are replaced by groups from our reference, except
{url} placeholder which is replaced with the url constructed above:

[GET /user/status](http://example.com/api#user-content-get-

userstatus)

The conversion is done. Our Markdown content will now look like this:

To find out user's status use [GET /user/status](http://

example.com/api#user-content-get-userstatus) method.

APIReferences | .December 12, 2021 157

find_by_anchor mode

find_by_anchor generates the id by anchor_template parameter and search-
es for this id on the API web page. If an element with such id is found, the reference
is converted into a Markdown link. If not — the reference is skipped.

Let’s assume that your API website code looks like this:

1 ...

2 <h2 id="api-method-get-userstatus">GET /user/status</h2>

3 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

4

5 <h2 id="api-method-get-apiv2adminstatus">GET /api/v2/admin/

status</h2>

6 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

7 ...

APIReferences config in your foliant.yml in this case may look like this:

1 preprocessors:

2 apireferences:

3 reference:

4 output_template: '**[{verb} {command}]({url})**'

5 # other reference properties are default

6 API:

7 My-API:

8 mode: find_by_anchor

9 url: http://example.com/api

10 tags: ['h1', 'h2']

11 anchor_template: 'api-method {verb} {command

}'

12 anchor_converter: pandoc

Now let’s reference a GET /user/status method in our Markdown source:

To find out user's status use `GET /user/status` method.

APIReferences will notice a reference mentioned in our markdown: ‘ GET /user/

status‘. It will capture it and split into two groups:

APIReferences | .December 12, 2021 158

— verb: GET,
— command: /user/status.

Then it will pass it to the anchor template 'api-method {verb} {command}'

which we’ve stated in our config, and this will result in a string:

'user content GET /user/status'

After that APIReferences will convert this string into an id with an anchor converter.
We’ve used pandoc converter in our config, which will turn the string into this: api

-method-getuserstatus.

Now APIReferences will parse the web page and look for all h1 and h2 tags (as
specified in tags parameter) that have ids and compare these ids to our generated
id.

One of the elements satisfies the requirement:

<h2 id="api-method-get-userstatus">GET /user/status</h2>

It means that referenced method is present on API web page, so APIReferences will
add this id to our API url (which we’ve stated in config) to form a link: http://

example.com/api#api-method-get-userstatus.

Finally, it’s time to construct a Markdown link. APIReferences takes an
output_template from the reference config: '**[{verb} {command}]({

url})**'.

Placeholders in the output template are replaced by groups from our reference, except
{url} placeholder which is replaced with the url constructed above:

**[GET /user/status](http://example.com/api#api-method-get-

userstatus)**

The conversion is done. Our Markdown content will now look like this:

To find out user's status use **[GET /user/status](http://

example.com/api#api-method-get-userstatus)** method.

find_by_tag_content mode

find_by_tag_content generates tag content by the content_template and
searches for an HTML element with such content on the API web page. If an element
is found, the reference is converted into a Markdown link. If not — the reference is
skipped.

APIReferences | .December 12, 2021 159

This mode is convenient when there’s no way to determine tag id basing on the refer-
ence, for example, when ids are random strings.

Let’s assume that your API website code looks like this:

1 ...

2 <h2 id="o1egwb7agw">GET /user/status</h2>

3 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

4

5 <h2 id="y3yn8ewg32">GET /api/v2/admin/status</h2>

6 <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit.

</p>

7 ...

APIReferences config in your foliant.yml in this case may look like this:

1 preprocessors:

2 apireferences:

3 reference:

4 output_template: '[{prefix}: {verb} {command}]({

url})'

5 # other reference properties are default

6 API:

7 My-API:

8 mode: find_by_tag_content

9 url: http://example.com/api

10 tags: ['h1', 'h2']

11 content_template: '{verb} {command}'

Now let’s reference a GET /user/status method in our Markdown source:

To find out user's status use `My-API: GET /user/status`

method.

APIReferences will notice a reference mentioned in our markdown: ‘ My-API: GET

/user/status‘. The reference has the prefix My-API, which means that My-API

from the API section should be used. It will capture it and split into three groups:

— prefix: My-API,
— verb: GET,

APIReferences | .December 12, 2021 160

— command: /user/status.

Then it will pass it to the header template '{verb} {command}' which we’ve
stated in our config, and this will result in a string:

'GET /user/status'

Now APIReferences will parse the web page and look for all h1 and h2 tags (as
specified in the tags parameter) whose content equals to our generated content.

One of the elements satisfies the requirement:

<h2 id="o1egwb7agw">GET /user/status</h2>

It means that referenced method is present on the API web page, so APIReferences
will take an id o1egwb7agw from it and add it to our API url (which we’ve stated in
config) to form a link: http://example.com/api#o1egwb7agw.

Finally, it’s time to construct a Markdown link. APIReferences takes an
output_template from the reference config: '[{prefix}: {verb} {

command}]({url})'.

Placeholders in the output template are replaced by groups from our reference, except
{url} placeholder which is replaced with the url constructed above:

[My-API: GET /user/status](http://example.com/api#api-

method-get-userstatus)

The conversion is done. Our Markdown content will now look like this:

To find out user's status use [My-API: GET /user/status](

http://example.com/api#api-method-get-userstatus) method.

find_for_swagger mode

find_for_swagger mode parses the OpenAPI spec file and looks for the refer-
enced method in it. It then generates an anchor for SwaggerUI website based on data
from the reference and the operation properties in the spec.

Let’s assume that your OpenAPI specification looks like this:

1 {

2 "swagger": "2.0",

3 ...

4 "paths": {

APIReferences | .December 12, 2021 161

5 "/user/status": {

6 "GET": {

7 "tags": ["userauth"],

8 "summary": "Returns user auth status",

9 "operationId": "checkStatus",

10 ...

11 },

12 }

13 ...

On the default SwaggerUI website the anchor to this method will be #/userauth

/checkStatus. It consists of the first tag from the operation properties and the
operationId. So to generate the proper anchor APIReferences will need to get those
parts from the spec.

APIReferences config in your foliant.yml in this case may look like this:

1 preprocessors:

2 apireferences:

3 # reference options are default in this example

4 API:

5 My-API:

6 mode: find_for_swagger

7 url: http://example.com/api

8 spec: !path swagger.json

9 anchor_template: '/{tag}/{operation_id}' #

you can omit this line because it's the default value

Now let’s reference a GET /user/status method in our Markdown source:

To find out user's status use `GET /user/login` method.

APIReferences will notice a reference mentioned in our markdown: ‘ GET /user/

login‘. It will capture it and split into two groups:

— verb: GET,
— command: /user/login.

Note that verb and command groups are required for this mode if you
are to redefine default reference regex.

APIReferences | .December 12, 2021 162

Now, when we have a verb and a command, we can search for it in the OpenAPI spec.
APIReferences parses the spec and searches the paths section for our operation.
From the operation properties APIReferences takes two values:

— tag: first element from the tags list,
— operationId.

These values are then passed to the anchor template '/{tag}/{operation_id

}', along with groups from our reference, this will result in a string:

'/userauth/checkStatus'

That’s the id we were looking for. APIReferences will add it to our API url (which
we’ve stated in config) to form a link: http://example.com/api#/userauth/

checkStatus.

Finally, it’s time to construct a Markdown link. APIReferences takes an
output_template from the reference config, which is default: '[{verb} {

command}]({url})'.

Placeholders in the output template are replaced by groups from our reference, except
{url} placeholder which is replaced with the url constructed above:

[GET /user/login](http://example.com/api#/userauth/

checkStatus)

The conversion is done. Our Markdown content will now look like this:

To find out user's status use [GET /user/login](http://

example.com/api#/userauth/checkStatus) method.

find_for_redoc mode

find_for_redoc is similar to find_for_swagger mode, except that deafult
anchor template is 'operation/{operation_id}'.

Handling Multiple APIs
APIReferences can work with several APIs at once, and honestly, it’s very good at this.

Let’s consider an example foliant.yml:

1 preprocessors:

2 apireferences:

3 API:

APIReferences | .December 12, 2021 163

4 Client-API:

5 mode: find_by_tag_content

6 url: http://example.com/api/client

7 content_template: '{verb} {command}'

8 Admin-API:

9 mode: find_by_anchor

10 url: http://example.com/api/admin

11 content_template: '{verb} {command}'

In this example we’ve defined two APIs: Client-API and Admin-API, these are
just names, they may be anything you want. Now we can reference both APIs:

1 When user clicks "LOGIN" button, the app sends a request `

POST /user/login`.

2

3 To restrict user from logging in run `PUT /admin/ban_user/{

id}`.

After applying the preprocessor, this source will turn into:

1 When user clicks "LOGIN" button, the app sends a request [

POST /user/login](http://example.com/api/client#post-

userlogin).

2

3 To restrict user from logging in run [PUT /admin/ban_user/{

id}](](http://example.com/api/admin#put-adminbanuser-id).

As you see, APIReferences determined, which reference corresponds to which API.
That is possible because when APIReferences meets a non-prefixed reference, it goes
through each defined API and searches for the mentioned method.

But what happens if we reference a method which is present in both APIs?

Run `GET /system/healthcheck` for debug information.

You have to understand that, even though APIReferences is very powerful, it doesn’t
understand the concept of free will. It can’t make the choice for you, so instead, it will
show a warning and skip this reference:

APIReferences | .December 12, 2021 164

WARNING: [index.md] Failed to process reference. Skipping. `

GET /system/healthcheck` is present in several APIs (Client-

API, Admin-API). Please, use prefix.

In the warning text, there’s a suggestion to use a prefix. A prefix is a way to make your
reference more specific and point APIReferences to the correct API. The value of the
prefix is the API name as defined in the config. So for Client API, the prefix would be
Client-API, for Admin — Admin-API. Let’s fix our example:

1 Run `Admin-API: GET /system/healthcheck` to get debug

information about the Admin API service.

2

3 Run `Client-API: GET /system/healthcheck` to get debug

information about the Client API service.

If you don’t like the format in which we supply prefix (<prefix>:
<verb> <command>), you can change it by tweaking reference regex.
More info in Capturing References section.

It’s recommended to always use prefixes for unambiguity. The generate_anchor

mode won’t work at all for references without prefixes, because it doesn’t perform any
checks and almost always returns a link.

Handling Multiple Reference Configuration
You can not only make APIReferences work with different APIs but also with different
reference configurations. reference parameter is a list for a reason. And because
output_template is part of reference configuration, you can make different refer-
ences transform into different values.

Here’s an example config:

1 preprocessors:

2 apireferences:

3 reference:

4 - only_with_prefixes: true

5 output_template: '**[{verb} {command}]({url})

**'

6 - only_with_prefixes: false

7 output_template: '[{verb} {command}]({url})'

APIReferences | .December 12, 2021 165

8 API:

9 ...

With such config references with prefixes will be transformed into bold links, while
non-prefixed references will remain regular links.

Commands and Endpoint Prefixes
APIReferences treats the command part of your reference in a special way. While
searching for it on the API website it will try to substitute the command place holder:

— with and without leading slash (/user/login and user/login),
— with and without endpoint prefix, if one is defined (/api/v1/user/login and

/user/login).

Here’s an example config to illustrate this feature:

1 preprocessors:

2 apireferences:

3 reference:

4 - only_with_prefixes: true

5 output_template: '**[{verb} {command}]({url})

**'

6 - only_with_prefixes: false

7 output_template: '[{verb} {command}]({url})'

8 API:

9 My-API:

10 mode: find_by_tag_content

11 url: http://example.com/api

12 content_template: '{verb} {command}'

13 endpoint_prefix: /api/v1

Considering that the API website source looks like this:

<h2 id="asoi17uo">GET /api/v1/user/status</h2>

Which of these references, do you think, will give us the desired result?

1 `GET /user/status`

2 `GET user/status`

3 `GET /api/v2/user/status`

APIReferences | .December 12, 2021 166

If you were reading carefully, you already know the answer — all of these references
will result in the same link:

1 [GET /user/status](http://example.com/api#asoi17uo)

2 [GET /user/status](http://example.com/api#asoi17uo)

3 [GET /user/status](http://example.com/api#asoi17uo)

Capturing References
APIReferences uses regular expressions to capture references to API methods in Mark-
down files.

The default reg-ex is:

`((?P<prefix>[\w-]+):\s*)?(?P<verb>OPTIONS|GET|HEAD|POST|PUT

|DELETE|TRACE|CONNECT|PATCH|LINK|UNLINK)\s+(?P<command>\S+)`

This expression accepts references like these:

— Client-API: GET user/info

— UPDATE user/details

Notice that the default expression uses Named Capturing Groups. You have to use
them too if you are to redefine the expression. You can name these groups as you like
and have as many or as few as you wish, but it’s recommended to include the prefix

group for API prefix logic to work. It is also required for all groups which are in the
output_template also to be present in the regex.

To redefine the regular expression add an option regex to the reference config.

For example, if you want to capture ONLY references with prefixes you may use the
following:

1 preprocessors:

2 - apireferences:

3 reference:

4 - regex: '((?P<prefix>[\w-]+):\s*)(?P<verb>POST|GET|

PUT|UPDATE|DELETE)\s+(?P<command>\S+)`'

This example is for illustrative purposes only. You can achieve the same
goal by just switching on the only_with_prefixes option.

Now the references without prefix (UPDATE user/details) will be ignored.

APIReferences | .December 12, 2021 167

https://docs.python.org/3/howto/regex.html#non-capturing-and-named-groups

Customizing Output
You can customize the output-string which will replace the reference string. To do
that add a template into your reference configuration.

A template is a string that may contain placeholders, surrounded by curly braces.
These placeholders will be replaced with the values, and all the rest will remain un-
changed.

For example, look at the default template:

1 preprocessors:

2 - apireferences:

3 reference:

4 - output_template: '[{verb} {command}]({url})',

Don’t forget the single quotes around the template. These braces and
parenthesis easily make YAML think that it is an embedded dictionary or
list.

With the default template, the reference string will be replaced by something like that:

[GET user/info](http://example.com/api/#get-user-info)

If you want references to be transformed into something else, create your own tem-
plate. You can use placeholders from the reference regular expression along with
some additional:

placeholder description example

source Full original reference string ‘ Client-API:
GET user/info‘

url Full url to the method description http://example.
com/api/#get-

user-info
endpoint_prefix API endpoint prefix from API

configuration
/api/v2

Placeholders from the default regex are:

APIReferences | .December 12, 2021 168

placeholder description example

prefix API Prefix used in the reference Client-API
verb HTTP verb used in the reference GET
command API command being referenced with

endpoint prefix removed
/user/info

Archeme
pypipypi v1.0.3v1.0.3

GitHubGitHub v1.0.2v1.0.2

Archeme
Archeme preprocessor allows to integrate Foliant with Archeme, a tool for describ-
ing and visualizing schemes and diagrams, primarily architectural. Archeme requires
Graphviz to be installed.

Archeme preprocessor finds diagram definitions that are described with Archeme DSL,
in source Markdown content, then calls Archeme and Graphviz to draw diagrams, and
then replaces the diagram definitions with image references.

Installation

$ pip install foliantcontrib.archeme

Config
To enable the preprocessor, add archeme to preprocessors section in the project
config:

1 preprocessors:

2 - archeme

The preprocessor has a number of options with the following default values:

1 preprocessors:

Archeme | .December 12, 2021 169

https://pypi.org/project/foliantcontrib.archeme/
https://github.com/foliant-docs/foliantcontrib.archeme
https://github.com/foliant-docs/archeme/
https://www.graphviz.org/

2 - archeme:

3 cache_dir: !path .archemecache

4 graphviz_paths:

5 dot: dot

6 neato: neato

7 fdp: fdp

8 config_concat: false

9 config_file: null

10 action: generate

11 format: png

12 targets: []

Some values of options specified in the project config may be overridden by tag at-
tributes, see below.

cache_dir Directory to store generated Graphviz sources and drawn diagram im-
ages.

graphviz_paths Paths to binaries of Graphviz engines to be used in external com-
mands: dot, neato, and fdp.

config_concat Flag that tells the preprocessor to read the config file and the di-
agram definition as YAML strings, concatenate these strings, and then load the
concatenation result, i.e. single YAML string, as an object. If this option is not
set (by default), config and diagram definition will be loaded as separate objects,
and then merged. This option may be useful when some aliases are defined in
the config, and you would like to use their values in the diagram definition.

config_file Path to default config file. May be overridden with the value of the
respective config_file tag attribute, see below. Config file usually defines
common settings of multiple diagrams, it’s recommended but not strictly re-
quired. By default, no config file is used.

action Default action. Used when the respective action tag attribute is not spec-
ified explicitly, see below. Available values are: generate (default), and
merge (see descriptions in Archeme documentation).

format Format of the output image. May take any value supported by Graphviz, but
note that drawn images are used within Markdown content that will be rendered
by one or another backend. Preferred values are: png (default), and svg. The
value of this option may be overridden by the respective format tag attribute.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets. Limitation of available targets may be useful

Archeme | .December 12, 2021 170

https://github.com/foliant-docs/archeme/#cli-usage

when it’s needed to build a certain Foliant project in different ways with various
settings, e.g. as a stand-alone documentation (for example, with the site tar-
get), and as a part of a documentation that combines several Foliant projects
(in this case the pre target is usually used).

Usage
To insert an Archeme diagram definition into your Markdown source, enclose it be-
tween <archeme>...</archeme> tags:

1 <archeme>

2 structure:

3 - node:

4 id: first

5 - node:

6 id: second

7 edges:

8 - tail: first

9 head: second

10 </archeme>

You may use optional tag attributes:

— caption—to set an alternative text description of the diagram that may be ren-
dered as image caption by some backends;

— module_id—to specify an unique ID of the diagram that may be used for merging
multiple diagram definitions;

— action—action that should be applied to the diagram definition; the available
values are generate and merge; this attribute overrides the respective action

config option;
— config_file—path to a specific config file for the certain diagram definition;

this attribute overrides the respective config_file config option;
— format—output image format for the certain diagram definition; this attribute

overrides the respective format config option.

Examples

Diagram definition with explicitly specified ID, config file, and output format:

1 <archeme module_id="one" caption="Module 1" config_file="!

project_path another_config.yml" format="svg">

Archeme | .December 12, 2021 171

2 structure:

3 - node:

4 id: first

5 - node:

6 id: second

7 edges:

8 - tail: first

9 head: second

10 </archeme>

Archeme DSL definition that prescribes to combine two modules with explicitly spec-
ified IDs:

1 <archeme action="merge">

2 structure:

3 - module:

4 id: one

5 - module:

6 id: two

7 </archeme>

Note that the file and description module parameters in Archeme DSL work
as usual. If you need to combine the diagrams that are identified within the current
Foliant project by using <archeme module_id="..."> tags, you should to omit
the file and description module parameters in your combined diagrams defi-
nitions.

Argdown
pypipypi v0.1.1v0.1.1

githubgithub v0.1.1v0.1.1

Argdown | .December 12, 2021 172

https://pypi.org/project/foliantcontrib.argdown/
https://github.com/foliant-docs/foliantcontrib.argdown

Argdown Diagrams Preprocessor for Foliant
Argdown is a modeling language for creating argument maps. This preprocessor takes
Argdown diagram definitions in source markdown files and converts them into images
on the fly during project build.

This preprocessor uses Argdown Image Export package tool by Christian Voigt to con-
vert diagrams into images.

Installation

$ pip install foliantcontrib.argdown

You will also need to install Argdown CLI and the Image Export package:

1 $ npm install -g @argdown/cli

2 $ npm install -g @argdown/image-export

Config
To enable the preprocessor, add argdown to preprocessors section in the project
config:

1 preprocessors:

2 - argdown

The preprocessor has a number of options:

1 preprocessors:

2 - argdown:

3 cache_dir: !path .diagramscache/argdown

4 converter_path: argdown

5 format: png

6 as_image: true

7 params:

8 no-title: true

9 fix_svg_size: false

cache_dir Path to the cache directory for the generated diagrams. It can be a path
relative to the project root or a global one.

Argdown | .December 12, 2021 173

https://argdown.org/
https://github.com/christianvoigt/argdown/tree/master/packages/argdown-image-export
https://github.com/christianvoigt

To save time during build, only new and modified diagrams are rendered.
The generated images are cached and reused in future builds.

converter_path Path to Argdown CLI. By default, it is assumed that you have the
argdown command in your PATH, but if it is not the case you can define it here.
Default: argdown

format Output format of the diagram image. Available formats at the time of writing:
dot, graphml, svg, pdf, png, jpg, webp. Default: png

as_image If true — inserts the diagram into the document as Markdown-image.
If false — inserts the source code of the diagram directly into the document
(works only for svg, dot and graphml formats). Default: true

params Params passed to the Argdown CLI map tool. Value of this option must be
a YAML-mapping. Params which require values should be specified as param:

value; params which don’t require values should be specified as param:

true.

To see the full list of available params, run argdown map --help.

fix_svg_size Works only with svg format and as_image: false. By de-
fault svg is embedded with hardcoded width and height so they may exceed
the boundaries of your HTML page. If this option is set to true the svg width
and height will be set to 100% which will make it fit inside your content con-
tainer. Default: false.

Usage
To insert a diagram definition in your Markdown source, enclose it between <

argdown>...</argdown> tags:

1 ’

2 Heres the diagram:

3

4 <argdown>

5 ===

6 title: The Core Argument of Populism

7 author: David Lanius

8 date: 27/10/2018

9 ===

Argdown | .December 12, 2021 174

10

11

12 This is a recontruction of right-wing populist argumentation

13 based on the electoral platform of the German party...

14 </argdown>

You can override preprocessor parameters in the tag options. For example if the format
for diagrams is set to png in foliant.yml and you need one of your diagrams to render
in svg, override the format option in the tag:

1 SVG diagram:

2

3 <argdown format="svg">

4 ...

5 </argdown>

Tags also have an exclusive option caption— the markdown caption of the diagram
image.

1 Diagram with a caption:

2

3 <argdown caption="Diagram of the opposing arguments">

4 ...

5 </argdown>

Badges
pypipypi v1.0.3v1.0.3

GitHubGitHub v1.0.3v1.0.3

Badges
Preprocessor for Foliant which helps to add badges to your documents. It uses
Shields.io to generate badges.

Badges | .December 12, 2021 175

https://pypi.org/project/foliantcontrib.badges/
https://github.com/foliant-docs/foliantcontrib.badges
https://shields.io

Installation

$ pip install foliantcontrib.badges

Config
To enable the preprocessor, add badges to preprocessors section in the project
config:

1 preprocessors:

2 - badges

The preprocessor has a number of options:

1 preprocessors:

2 - badges:

3 server: 'https://img.shields.io'

4 as_object: true

5 add_link: true

6 vars:

7 jira_path: localhost:3000/jira

8 package: foliant

9 # badge look parameters

10 style: flat-square

11 logo: jira

server Shields server URL, which hosts badges. default: https://img.

shields.io

as_object If true — preprocessor inserts svg badges with HTML <object>

tag, instead of Markdown image tag. This is required for links and hints to work.
default: true

add_link If true preprocessor tries to determine the link which should be added
to badge (for example, link to jira issue page for jira issue badge). Only works
with as_object = true. default: true

Please note that right now only links for pypi and jira-issue badges are
being added automatically. Please contribute or contact author for adding
other services.

Badges | .December 12, 2021 176

vars Dictionary with variables which will be replaced in badge urls. See variables
section.

Also you may add parameters specified on the shields.io website which alter the badge
view like: label, logo, style etc.

Usage
Just add the badge tag and specify path to badge in the tag body:

<badge>jira/issue/https/issues.apache.org/jira/kafka-2896.

svg</badge>

All options from config may be overriden in tag parameters:

<badge style="social" as_object="false">jira/issue/https/

issues.apache.org/jira/kafka-2896.svg</badge>

Variables
You can use variables in your badges to replace parts which repeat often. For example,
if we need to add many badges to our Jira tracker, we may put the protocol and host
parameters into a variable like this:

1 preprocessors:

2 - badges:

3 vars:

4 jira: https/issues.apache.org/jira

To reference a variable in a badge path use syntax ${variable}:

1 <badge>jira/issue/${jira}/kafka-2896.svg</badge>

2

3 Description of the issue goes here. But it's not the only

one.

4

5 <badge>jira/issue/${jira}/KAFKA-7951.svg</badge>

6

7 Description of the second issue.

Badges | .December 12, 2021 177

BindFigma
pypipypi v1.0.3v1.0.3

GitHubGitHub v1.0.3v1.0.3

BindFigma
BindFigma is a preprocessor that downloads and optionally resizes design layout im-
ages from Figma, and binds these images with the documentation project.

The preprocessor uses Figma REST API to get URLs of images to download. To use
the preprocessor, you should get an access token for it via your Figma account.

If you need to resize downloaded images, you should install ImageMagick.

Installation

$ pip install foliantcontrib.bindfigma

Config
To enable the preprocessor, add bindfigma to preprocessors section in the
project config:

1 preprocessors:

2 - bindfigma

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - bindfigma:

3 cache_dir: !path .bindfigmacache

4 api_caching: disabled

5 convert_path: convert

6 caption: ''

7 hyperlinks: true

8 multi_delimeter: '\n\n'

BindFigma | .December 12, 2021 178

https://pypi.org/project/foliantcontrib.bindfigma/
https://github.com/foliant-docs/foliantcontrib.bindfigma
https://www.figma.com/
https://www.figma.com/developers/api
https://www.figma.com/developers/api#access-tokens
https://imagemagick.org/

9 resize: null

10 access_token: null

11 file_key: null

12 ids: null

13 scale: null

14 format: null

15 svg_include_id: null

16 svg_simplify_stroke: null

17 use_absolute_bounds: null

18 version: null

Some values of options specified in the project config may be overridden by tag at-
tributes, see below.

cache_dir Directory to store cached API responses, downloaded and resized im-
ages.

api_caching API responses caching mode. Available values: disabled—switch
off unconditionally; enabled—switch on unconditionally; env—switch on on-
ly if the FOLIANT_FIGMA_CACHING environment variable is set, otherwise
switch off. If this mode is switched on, the preprocessor caches Figma API re-
sponses locally and uses cached data instead of performing API request. In this
case, Figma node updating without changing API URL may not take effect.

convert_path Path to convert binary, a part of ImageMagick. If resizing is not
needed, ImageMagick will not be used.

caption Caption of images. The {{image_id}} placeholder in the caption will
be replaced with Figma node ID.

hyperlinks Flag that tells the preprocessor to wrap image references into hyper-
links to related Figma URLs.

multi_delimeter String that should separate multiple image references.
resize Width of resulting images in pixels. If not specified, resizing is not per-

formed.
access_token Access token that you can generate in your Figma account.
file_key ID of the Figma file.
ids One or more IDs of nodes in the Figma file. May be specified as a list or as a

comma-separated string.
scale, format, svg_include_id, svg_simplify_stroke, use_absolute_bounds, version

Query parameters to use in Figma API requests, see descriptions in Figma API
documentation.

BindFigma | .December 12, 2021 179

https://www.figma.com/developers/api#get-images-endpoint
https://www.figma.com/developers/api#get-images-endpoint

Usage
To insert a design layout image from Figma into your documentation, use <figma

>...</figma> tags in Markdown source:

1 ’

2 Heres an image from Figma:

3

4 <figma caption="An optional caption" resize="300" file_key="

ABC" ids="node1,node2,node3"></figma>

You may use tag attributes to override the values of the project config options with
the same names. All the options excepting cache_dir, api_caching and
convert_path may be overridden in this way.

BindFigma preprocessor will replace such statements with local image references.
If ids refers to more than one image, a set of image references will be gen-
erated. Multiple image references will be separated with the string specified as
multi_delimeter.

BindSympli
pypipypi v1.0.14v1.0.14

GitHubGitHub v1.0.14v1.0.14

BindSympli
BindSympli is a tool to download design layout images from Sympli CDN using certain
Sympli account, to resize these images, and to bind them with the documentation
project.

Installation
Before using BindSympli, you need to install Node.js, Puppeteer, wget, and ImageMag-
ick.

BindSympli | .December 12, 2021 180

https://pypi.org/project/foliantcontrib.bindsympli/
https://github.com/foliant-docs/foliantcontrib.bindsympli
https://sympli.io/
https://nodejs.org/en/
https://github.com/GoogleChrome/puppeteer
https://www.gnu.org/software/wget/
https://imagemagick.org/
https://imagemagick.org/

BindSympli preprocessor code is written in Python, but it uses the external script
written in JavaScript. This script is provided in BindSympli package:

$ pip install foliantcontrib.bindsympli

Config
To enable the preprocessor, add bindsympli to preprocessors section in the
project config:

1 preprocessors:

2 - bindsympli

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - bindsympli:

3 get_sympli_img_urls_path: get_sympli_img_urls.js

4 wget_path: wget

5 convert_path: convert

6 cache_dir: !path .bindsymplicache

7 sympli_login: ''

8 sympli_password: ''

9 image_width: 800

10 max_attempts: 5

get_sympli_img_urls_path Path to the script get_sympli_img_urls.js

or alternative command that launches it (e.g. node some_another_script

.js). By default, it is assumed that you have this command and all other com-
mands in PATH.

wget_path Path to wget binary.
convert_path Path to convert binary, a part of ImageMagick.
cache_dir Directory to store downloaded and resized images.
sympli_login Your username in Sympli account.
sympli_password Your password in Sympli account.
image_width Width of resulting images in pixels (original images are too large).
max_attempts Maximum number of attempts to run the script

get_sympli_img_urls.js on fails.

BindSympli | .December 12, 2021 181

Usage
To insert a design layout image from Sympli into your documentation, use <sympli

>...</sympli> tags in Markdown source:

1 ’

2 Heres an image from Sympli:

3

4 <sympli caption="An optional caption" width="400" url="https

://app.sympli.io/app#!/designs/0123456789abcdef01234567/

specs/assets"></sympli>

You have to specify the URL of Sympli design layout page in url attribute.

You may specify an optional caption in the caption attribute, and an optional
custom image width in the width attribute. The width attribute overrides the
image_width config option for a certain image.

BindSympli preprocessor will replace such blocks with local image references.

Blockdiag
pypipypi v1.0.5v1.0.5

GitHubGitHub v1.0.5v1.0.5

Blockdiag Preprocessor for Foliant
Blockdiag is a tool to generate diagrams from plain text. This preprocessor finds dia-
gram definitions in the source and converts them into images on the fly during project
build. It supports all Blockdiag flavors: blockdiag, seqdiag, actdiag, and nwdiag.

Installation

$ pip install foliantcontrib.blockdiag

Blockdiag | .December 12, 2021 182

https://pypi.org/project/foliantcontrib.blockdiag/
https://github.com/foliant-docs/foliantcontrib.blockdiag
http://blockdiag.com/

Config
To enable the preprocessor, add blockdiag to preprocessors section in the
project config:

1 preprocessors:

2 - blockdiag

The preprocessor has a number of options:

1 preprocessors:

2 - blockdiag:

3 cache_dir: !path .diagramscache

4 blockdiag_path: blockdiag

5 seqdiag_path: seqdiag

6 actdiag_path: actdiag

7 nwdiag_path: nwdiag

8 params:

9 ...

cache_dir Path to the directory with the generated diagrams. It can be a path
relative to the project root or a global one; you can use ~/ shortcut.

Note

To save time during build, only new and modified diagrams are ren-
dered. The generated images are cached and reused in future builds.

*_path Paths to the blockdiag, seqdiag, actdiag, and nwdiag binaries. By
default, it is assumed that you have these commands in PATH, but if they’re
installed in a custom place, you can define it here.

params Params passed to the image generation commands (blockdiag,
seqdiag, etc.). Params should be defined by their long names, with
dashes replaced with underscores (e.g. --no-transparency becomes
no_transparency); also, -T param is called format for readability:

1 preprocessors:

2 - blockdiag:

3 params:

4 antialias: true

Blockdiag | .December 12, 2021 183

5 font: !path Anonymous_pro.ttf

To see the full list of params, run blockdiag -h.

Usage
To insert a diagram definition in your Markdown source, enclose it between <

blockdiag>...</blockdiag>, <seqdiag>...</seqdiag>, <actdiag

>...</actdiag>, or <nwdiag>...</nwdiag> tags (indentation inside tags is
optional):

1 Here's a block diagram:

2

3 <blockdiag>

4 blockdiag {

5 A -> B -> C -> D;

6 A -> E -> F -> G;

7 }

8 </blockdiag>

9

10 Here's a sequence diagram:

11

12 <seqdiag>

13 seqdiag {

14 browser -> webserver [label = "GET /index.html"];

15 browser <-- webserver;

16 browser -> webserver [label = "POST /blog/comment"];

17 webserver -> database [label = "INSERT

comment"];

18 webserver <-- database;

19 browser <-- webserver;

20 }

21 </seqdiag>

To set a caption, use caption option:

1 Diagram with a caption:

2

3 <blockdiag caption="Sample diagram from the official site">

4 blockdiag {

Blockdiag | .December 12, 2021 184

5 A -> B -> C -> D;

6 A -> E -> F -> G;

7 }

8 </blockdiag>

You can override params values from the preprocessor config for each diagram:

1 By default, diagrams are in png. But this diagram is in svg:

2

3 <blockdiag caption="High-quality diagram" format="svg">

4 blockdiag {

5 A -> B -> C -> D;

6 A -> E -> F -> G;

7 }

8 </blockdiag>

BPMN
pypipypi v1.0.1v1.0.1

githubgithub v1.0.1v1.0.1

BPMN Diagrams Preprocessor for Foliant
BPMN (Business Process Modeling Notation) is visual modeling language for docu-
menting business workflows. This preprocessor converts BPMN diagram definitions
in source markdown files and converts them into images on the fly during project
build.

This preprocessor uses bpmn-to-image tool by bpmn.io to convert diagrams into im-
ages.

Installation

$ pip install foliantcontrib.bpmn

BPMN | .December 12, 2021 185

https://pypi.org/project/foliantcontrib.bpmn/
https://github.com/foliant-docs/foliantcontrib.bpmn
https://www.bpmn.org/
https://github.com/bpmn-io/bpmn-to-image
https://bpmn.io/

You will also need to install bpmn-to-image:

$ npm install -g bpmn-to-image

Config
To enable the preprocessor, add bpmn to preprocessors section in the project
config:

1 preprocessors:

2 - bpmn

The preprocessor has a number of options:

1 preprocessors:

2 - bpmn:

3 cache_dir: !path .diagramscache/bpmn

4 converter_path: bpmn-to-image

5 format: png

6 as_image: true

7 params:

8 no-title: true

9 `fix_svg_size`: false

cache_dir Path to the cache directory for the generated diagrams. It can be a path
relative to the project root or a global one.

To save time during build, only new and modified diagrams are rendered.
The generated images are cached and reused in future builds.

converter_path Path to bpmn-to-image binary. By default, it is assumed that you
have the bpmn-to-image command in your PATH, but if it is not the case
you can define it here. Default: bpmn-to-image

format Output format of the diagram image. Available formats at the time of writing:
pdf, png, svg (note that most backends won’t render pdf as image). Default:
png

as_image If true— inserts the diagram into the document as Markdown-image. If
false — inserts the svg code of the diagram directly into the document (works
only for svg format). Default: true

BPMN | .December 12, 2021 186

https://github.com/bpmn-io/bpmn-to-image

params Params passed to the bpmn-to-image tool. Value of this option must be a
YAML-mapping. Params which require values should be specified as param:

value; params which don’t require values should be specified as param:

true:

1 preprocessors:

2 - bpmn:

3 params:

4 no-footer: true

5 min-dimensions: '500x300'

To see the full list of available params, run the bpmn-to-image com-
mand without parameters.

fix_svg_size Works only with svg format and as_image: false. By de-
fault svg is embedded with hardcoded width and height so they may exceed
the boundaries of your HTML page. If this option is set to true the svg width
and height will be set to 100% which will make it fit inside your content con-
tainer. Default: false.

Usage
To insert a diagram definition in your Markdown source, enclose it between <bpmn

>...</bpmn> tags:

1 ’

2 Heres the diagram:

3

4 <bpmn>

5 <?xml version="1.0" encoding="UTF-8"?>

6 <definitions xmlns="http://www.omg.org/spec/BPMN

/20100524/MODEL" xmlns:bpmndi="http://www.omg.org/spec/BPMN

/20100524/DI" xmlns:omgdc="http://www.omg.org/spec/DD

/20100524/DC" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" id="sid-38422fae-e03e-43a3-bef4-bd33b32041b2"

targetNamespace="http://bpmn.io/bpmn" exporter="http://bpmn.

io" exporterVersion="0.10.1">

7 <process id="Process_1" isExecutable="false">

8 <task id="Task_0l0q2kz" name="Single Task" />

BPMN | .December 12, 2021 187

9 </process>

10 <bpmndi:BPMNDiagram id="BpmnDiagram_1">

11 <bpmndi:BPMNPlane id="BpmnPlane_1" bpmnElement="

Process_1">

12 <bpmndi:BPMNShape id="Task_0l0q2kz_di" bpmnElement

="Task_0l0q2kz">

13 <omgdc:Bounds x="206" y="108" width="100" height

="80" />

14 </bpmndi:BPMNShape>

15 </bpmndi:BPMNPlane>

16 </bpmndi:BPMNDiagram>

17 </definitions>

18 </bpmn>

You can override preprocessor parameters in the tag options. For example if the format
for diagrams is set to png in foliant.yml and you need one of your diagrams to render
in svg, override the format option in the tag:

1 SVG diagram:

2

3 <bpmn format="svg">

4 ...

5 </bpmn>

Tags also have an exclusive option caption— the markdown caption of the diagram
image.

1 Diagram with a caption:

2

3 <bpmn caption="Diagram of the supply process">

4 ...

5 </bpmn>

Confluence
pypipypi v0.6.20v0.6.20

Confluence | .December 12, 2021 188

https://pypi.org/project/foliantcontrib.confluence/
https://pypi.org/project/foliantcontrib.confluence/

GitHubGitHub v0.6.20v0.6.20

Confluence preprocessor allows inserting content from Confluence server into your
Foliant project.

Installation

$ pip install foliantcontrib.confluence

Config
To enable the preprocessor, add confluence to preprocessors section in the
project config:

1 preprocessors:

2 - confluence

The preprocessor has a number of options:

1 preprocessors:

2 - confluence:

3 passfile: confluence_secrets.yml

4 host: https://my_confluence_server.org

5 login: user

6 password: !CONFLUENCE_PASS

7 space_key: "~user"

8 pandoc_path: pandoc

9 verify_ssl: true

passfile Path to YAML-file holding credentials. See details in Supplying Creden-
tials section. Default: confluence_secrets.yml

host Required Host of your confluence server. If not stated — it would be taken from
Confluence backend config.

login Login of the user who has permissions to create and update pages. If login
is not supplied, it would be taken from backend config, or prompted during the
build.

Confluence | .December 12, 2021 189

https://github.com/foliant-docs/foliantcontrib.confluence

password Password of the user. If password is not supplied, it would be taken from
backend config, or prompted during the build.

It is not secure to store plain text passwords in your config files. We rec-
ommend to use environment variables to supply passwords

space_key The space key where the page titles will be searched for.
pandoc_path Path to Pandoc executable (Pandoc is used to convert Confluence

content into Markdown).
verify_ssl If false, SSL verification will be turned off. Sometimes when dealing

with Confluence servers in Intranets it’s easier to turn this option off rather than
fight with admins. Not recommended to turn off for public servers in production.
Default: true

Usage
Add a <confluence></confluence> tag at the position in the document where
the content from Confluence should be inserted. The page is defined by its id or
title. If you are specifying page by title, you will also need to set space_key

either in tag or in the preprocessor options.

1 The following content is imported from Confluence:

2

3 <confluence id="12345"></confluence>

4

5 This is from Confluence too, but determined by page title (

space key is defined in preprocessor config):

6

7 <confluence title="My Page"></confluence>

8

9 Here we are overriding space_key:

10

11 <confluence space_key="ANOTHER_SPACE" title="My Page"></

confluence>

Supplying Credentials

There are two ways to supply credentials for your confluence server.

1. In foliant.yml

Confluence | .December 12, 2021 190

https://foliant-docs.github.io/docs/config/#env

The most basic way is just to put credentials in foliant.yml:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 login: user

5 password: pass

It’s not very secure because foliant.yml is usually visible to everybody in your project’s
git repository.

2. Using passfile

Alternatively, you can use a passfile. Passfile is a yaml-file which holds all your pass-
words. You can keep it out from git-repository by storing it only on your local machine
and production server.

To use passfile, add a passfile option to foliant.yml:

1 backend_config:

2 confluence:

3 host: https://my_confluence_server.org

4 passfile: confluence_secrets.yaml

The syntax of the passfile is the following:

1 hostname:

2 login: password

For example:

1 https://my_confluence_server.org:

2 user1: wFwG34uK

3 user2: MEUeU3b4

4 https://another_confluence_server.org:

5 admin: adminpass

If there are several records for a specified host in passfile (like in the example above),
Foliant will pick the first one. If you want specific one of them, add the login parameter
to your foliant.yml:

1 backend_config:

2 confluence:

Confluence | .December 12, 2021 191

3 host: https://my_confluence_server.org

4 passfile: confluence_secrets.yaml

5 login: user2

CSVTables
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

CSVTables for Foliant
This preprocessor converts csv data to markdown tables.

Installation

$ pip install foliantcontrib.csvtables

Config
To enable the preprocessor with default options, add csvtables to
preprocessors section in the project config:

1 preprocessors:

2 - csvtables

The preprocessor has a number of options (default values stated below):

1 preprocessors:

2 - csvtables:

3 delimiter: ';'

4 padding_symbol: ' '

5 paddings_number: 1

delimiter Delimiter of csv data.

CSVTables | .December 12, 2021 192

https://pypi.org/project/foliantcontrib.csvtables/
https://github.com/foliant-docs/foliantcontrib.csvtables

padding_symbol Symbol combination that will be places around datum (reversed
on the right side).

paddings_number Symbol combination multiplier.

Usage
You can place csv data in csvtable tag.

1 <csvtable>

2 Header 1;Header 2;Header 3;Header 4;Header 5

3 Datum 1;Datum 2;Datum 3;Datum 4;Datum 5

4 Datum 6;Datum 7;Datum 8;Datum 9;Datum 10

5 </csvtable>

Or in external file.csv.

<csvtable src="table.csv"></csvtable>

You can reassign setting for certain csv tables.

1 <csvtable delimiter=":" padding_symbol=" *">

2 Header 1:Header 2:Header 3:Header 4:Header 5

3 Datum 1:Datum 2:Datum 3:Datum 4:Datum 5

4 Datum 6:Datum 7:Datum 8:Datum 9:Datum 10

5 </csvtable>

Example
Usage section will be converted to this:

You can place csv data in csvtable tag.

1 | Header 1 | Header 2 | Header 3 | Header 4 | Header 5 |

2 |----------|----------|----------|----------|----------|

3 | Datum 1 | Datum 2 | Datum 3 | Datum 4 | Datum 5 |

4 | Datum 6 | Datum 7 | Datum 8 | Datum 9 | Datum 10 |

Or in external file.csv.

1 | Header 1 | Header 2 | Header 3 | Header 4 | Header 5 |

2 |----------|----------|----------|----------|----------|

3 | Datum 1 | Datum 2 | Datum 3 | Datum 4 | Datum 5 |

CSVTables | .December 12, 2021 193

4 | Datum 6 | Datum 7 | Datum 8 | Datum 9 | Datum 10 |

You can reassign setting for certain csv tables.

1 | *Header 1* | *Header 2* | *Header 3* | *Header 4* | *

Header 5* |

2 |------------|------------|------------|------------|------------|

3 | *Datum 1* | *Datum 2* | *Datum 3* | *Datum 4* | *Datum

5* |

4 | *Datum 6* | *Datum 7* | *Datum 8* | *Datum 9* | *Datum

10* |

CustomIDs
pypipypi v1.0.7v1.0.7

GitHubGitHub v1.0.7v1.0.7

СustomIDs
CustomIDs is a preprocessor that allows to define custom identifiers (IDs) for headings
in Markdown source by using Pandoc-style syntax in projects built with MkDocs or
another backend that provides HTML output. These IDs may be used in hyperlinks
that refer to a specific part of a page.

Installation

$ pip install foliantcontrib.customids

Usage
To enable the preprocessor, add customids to preprocessors section in the
project config:

1 preprocessors:

CustomIDs | .December 12, 2021 194

https://pypi.org/project/foliantcontrib.customids/
https://github.com/foliant-docs/foliantcontrib.customids

2 - customids

The preprocessor supports the following options:

1 - customids:

2 stylesheet_path: !path customids.css

3 targets:

4 - pre

5 - mkdocs

6 - site

7 - ghp

stylesheet_path Path to the CSS stylesheet file. This stylesheet
should define rules for .custom_id_anchor_container, .

custom_id_anchor_container_level_N, .custom_id_anchor,
and .custom_id_anchor_level_N classes. Here N is the heading level
(1 to 6). Default path is customids.css. If stylesheet file does not exist,
default built-in stylesheet will be used.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

Custom ID may be specified after a heading content at the same line. Examples of
Markdown syntax:

1 # First Heading {#custom_id_for_first_heading}

2

3 A paragraph.

4

5 ## Second Heading {#custom_id_for_second_heading}

6

7 Some another paragraph.

This Markdown source will be finally transformed into the HTML code:

1 <div class="custom_id_anchor_container

custom_id_anchor_container_level_1"><div id="

custom_id_for_first_heading" class="custom_id_anchor

custom_id_anchor_level_1"></div></div>

2

CustomIDs | .December 12, 2021 195

3 <h1>First Heading</h1>

4

5 <p>A paragraph.</p>

6

7 <div class="custom_id_anchor_container

custom_id_anchor_container_level_2"><div id="

custom_id_for_second_heading" class="custom_id_anchor

custom_id_anchor_level_2"></div></div>

8

9 <h2>Second Heading</h2>

10

11 <p>Some another paragraph.</p>

(Note that CustomIDs preprocessor does not convert Markdown syntax into HTML;
it only inserts HTML tags <div class="custom_id_anchor_container

">...</div> into Markdown code.)

Custom IDs must not contain spaces and non-ASCII characters.

Examples of hyperlinks that refer to custom IDs:

1 [Link to Heading 1](#custom_id_for_first_heading)

2

3 [Link to Heading 2 in some document at the current site](/

some/page/#custom_id_for_second_heading)

4

5 [Link to some heading with custom ID at an external site](

https://some.site/path/to/the/page/#some_custom_id)

DBMLDoc
pypipypi v0.3.1v0.3.1

GitHubGitHub v0.3.1v0.3.1

DBMLDoc | .December 12, 2021 196

https://pypi.org/project/foliantcontrib.dbmldoc/
https://github.com/foliant-docs/foliantcontrib.dbmldoc

DBML Docs Generator for Foliant
This preprocessor generates Markdown documentation from DBML specification files .
It uses PyDBML for parsing DBML syntax and Jinja2 templating engine for generating
Markdown.

Installation

$ pip install foliantcontrib.dbmldoc

Config
To enable the preprocessor, add dbmldoc to preprocessors section in the project
config:

1 preprocessors:

2 - dbmldoc

The preprocessor has a number of options:

1 preprocessors:

2 - dbmldoc:

3 spec_url: http://localhost/scheme.dbml

4 spec_path: scheme.dbml

5 doc: true

6 scheme: true

7 template: dbml.j2

8 scheme_template: scheme.j2

spec_url URL to DBML spec file. If it is a list — preprocessor uses the first url which
works.

spec_path Local path to DBML spec file (relative to project dir).

If both url and path params are specified — preprocessor first tries to fetch
spec from url, and only if that fails looks for the file on the local path.

doc If true — documentation will be generated. Set to false if you only want to
draw a scheme of the database. Default true

scheme If true— the platuml code for database scheme will be generated. Default
true

DBMLDoc | .December 12, 2021 197

https://www.dbml.org/
https://github.com/Vanderhoof/PyDBML
http://jinja.pocoo.org/

template Path to jinja-template for rendering the generated documentation. Path
is relative to the project directory. If no template is specified preprocessor will
use default template (and put it into project dir if it was missing). Default: dbml

.j2

scheme_template Path to jinja-template for generating planuml code for the
database scheme. Path is relative to the project directory. If no template is
specified preprocessor will use default template (and put it into project dir if it
was missing). Default: scheme.j2

Usage
Add a <dbmldoc></dbmldoc> tag at the position in the document where the gen-
erated documentation should be inserted:

1 # Introduction

2

3 This document contains the automatically generated

documentation of our Database schema.

4

5 <dbmldoc></dbmldoc>

Each time the preprocessor encounters the tag <dbmldoc></dbmldoc> it inserts
the whole generated documentation text instead of it. The path or url to DBML spec
file is taken from foliant.yml.

You can also override some parameters (or all of them) in the tag options:

1 # Introduction

2

3 Introduction text for API documentation.

4

5 <dbmldoc spec_url="http://localhost/schema.dbml"

6 template="dbml.j2"

7 scheme="false">

8 </dbmldoc>

9

10 # Database scheme

11

12 And here goes a visual diagram of our database:

13

DBMLDoc | .December 12, 2021 198

14 <dbmldoc doc="false" scheme="true">

15 </dbmldoc>

Note that template path in tag is stated relative to the markdown file.

Tag parameters have the highest priority.

This way you can put your database description in one place and its diagram in the
other (like in the example above). Or you can even have documentation from several
different DBML spec files in one Foliant project.

Customizing output
The output markdown is generated by the Jinja2 template. Inside the template all
data from the parsed DBML file is available under the data variable. It is in fact
a PyDBMLParseResults object, as returned by PyDBML (see the docs to find out
which attributes are available).

To customize the output create a template which suits your needs. Then supply the
path to it in the template parameter. Same goes for the scheme template, which
is defined in the scheme_template parameter.

If you wish to use the default template as a starting point, build the foliant project
with dbmldoc preprocessor turned on. After the first build the default templates will
appear in your foliant project dir under the names dbml.j2 and scheme.j2.

DBDoc
pypipypi v0.1.8v0.1.8

GitHubGitHub v0.1.8v0.1.8

DBDoc | .December 12, 2021 199

http://jinja.pocoo.org/
https://github.com/Vanderhoof/PyDBML
https://pypi.org/project/foliantcontrib.dbdoc/
https://github.com/foliant-docs/foliantcontrib.dbdoc

Database Documentation Generator for Foliant

Static site on the picture was built with Slate backend together with DBDoc
preprocessor

This preprocessor generates simple documentation based on the structure of the
database. It uses Jinja2 templating engine for customizing the layout and PlantUML
for drawing the database scheme.

Currently supported databases:

— PostgreSQL,
— Oracle,
— Microsoft SQL Server,
— MySQL.

Important Notice: We, here at Foliant, don’t work with all of the databas-
es mentioned above. That’s why we cannot thoroughly test the prepro-
cessor’s work with all of them. That’s where we need your help: If you
encounter any errors during build; if you are not getting enough informa-
tion for your document in the template; if you can’t make the filters work;
or if you see any other anomaly, please send us an issue in GitHub. We
will try to fix it as fast as we can. Thanks!

DBDoc | .December 12, 2021 200

https://foliant-docs.github.io/docs/backends/slate/
http://jinja.pocoo.org/
http://plantuml.com/
https://github.com/foliant-docs/foliantcontrib.dbdoc/issues

Installation

Prerequisites

DBDoc generates documentation by querying database structure. That’s why you will
need client libraries and their Python connectors installed on your computer before
running the preprocessor.

PostgreSQL

To install PostgreSQL simply run

$ pip3 install psycopg2-binary

Oracle

Oracle libraries are proprietary, so we cannot include them even in our Docker distri-
bution. So if you are planning on using DBDoc to document Oracle databases, first
install the Instant Client.

If you search the web, you can find ways to install Oracle Instant Client
inside your Docker image, just saying.

Next install the Python connector for Oracle database

$ pip3 install cx_Oracle

Microsoft SQL Server

On Windows you will need to install MS SQL Server.

On Unix you will first need to install unixODBC, and then — the ODBC driver. Microsoft
has a detailed instructions on how to install the driver on Linux and on Mac.

Install the Python connector for Microsoft SQL Server database

$ pip3 install pyodbc

MySQL

On Mac you can simply run

$ brew install mysql

On Linux you will have to install server and client packages, for example, with apt-get

1 sudo apt-get update

DBDoc | .December 12, 2021 201

https://hub.docker.com/r/foliant/foliant/tags
https://hub.docker.com/r/foliant/foliant/tags
https://www.oracle.com/database/technologies/instant-client.html
http://www.unixodbc.org/
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server
https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/install-microsoft-odbc-driver-sql-server-macos

2 sudo apt-get install -y mysql-server libmysqlclient-dev

Finally, install the Python connector for Microsoft SQL Server database

$ pip3 install mysqlclient

Preprocessor

$ pip install foliantcontrib.dbdoc

Config
To enable the preprocessor, add dbdoc to preprocessors section in the project
config:

1 preprocessors:

2 - dbdoc

The preprocessor has a number of options:

1 preprocessors:

2 - dbdoc:

3 dbms: pgsql

4 host: localhost

5 port: 5432

6 dbname: postgres

7 user: postgres

8 password: !env DBDOC_PASS

9 doc: True

10 scheme: True

11 filters:

12 ...

13 doc_template: dbdoc.j2

14 scheme_template: scheme.j2

15 components:

16 - tables

17 - functions

18 - triggers

19 driver: '{ODBC Driver 17 for SQL Server}'

DBDoc | .December 12, 2021 202

dbms Name of the DBMS. Should be one of: pgsql, oracle, sqlserver, mysql
. Only needed if you are using <dbdoc> tag. If you are using explicit tags (
<oracle>, <pgsql>), this parameter is ignored.

host Database host address. Default: localhost

port Database port. Default: 5432 for pgsql, 1521 for Oracle, 1433 for MS SQL,
3306 for MySQL.

dbname Database name. Default: postgres for pgsql, orcl for oracle, mssql

for MS SQL, mysql for MySQL.
user Database user name. Default: postgres for pgsql, hr for oracle, SA for MS

SQL, root for MySQL.
password Database user password. Default: postgres for pgsql, oracle for

oracle, <YourStrong@Passw0rd> for MS SQL, passwd for MySQL.

It is not secure to store plain text passwords in your config files. We rec-
ommend to use environment variables to supply passwords

doc If true — documentation will be generated. Set to false if you only want to
draw a scheme of the database. Default: true

scheme If true— the platuml code for database scheme will be generated. Default:
true

filters SQL-like operators for filtering the results. More info in the Filters section.
doc_template Path to jinja-template for documentation. Path is relative to the

project directory. If not supplied — default template would be used.
scheme_template Path to jinja-template for scheme. Path is relative to the project

directory. If not supplied — default template would be used.
components List of components to be added to documentation. If not supplied —

everything will be added. Use to exclude some parts of documentation. Avail-
able components: 'tables', 'views', 'functions', 'triggers'.

driver Specific option for MS SQL Server database. Defines the driver connection
string. Default: {ODBC Driver 17 for SQL Server}.

Usage
DBDoc currently supports four database engines: Oracle, PostgreSQL, MySQL and
Microsoft SQL Server. To generate Oracle database documentation, add an <oracle

></oracle> tag to a desired place of your chapter.

1 # Introduction

2

DBDoc | .December 12, 2021 203

https://foliant-docs.github.io/docs/config/#env

3 This document contains the most awesome automatically

generated documentation of our marvellous Oracle database.

4

5 <oracle></oracle>

To generate PostgreSQL database documentation, add a <pgsql></pgsql> tag to
a desired place of your chapter.

1 # Introduction

2

3 This document contains the most awesome automatically

generated documentation of our marvellous Oracle database.

4

5 <pgsql></pgsql>

To generate MySQL database documentation, add a <mysql></mysql> tag to a
desired place of your chapter.

1 # Introduction

2

3 This document contains the most awesome automatically

generated documentation of our marvellous SQL Server

database.

4

5 <mysql></mysql>

To generate SQL Server database documentation, add a <sqlserver></

sqlserver> tag to a desired place of your chapter.

1 # Introduction

2

3 This document contains the most awesome automatically

generated documentation of our marvellous SQL Server

database.

4

5 <sqlserver></sqlserver>

Each time the preprocessor encounters one of the mentioned tags, it inserts the whole
generated documentation text instead of it. The connection parameters are taken
from the config-file.

DBDoc | .December 12, 2021 204

You can also specify some parameters (or all of them) in the tag options:

1 # Introduction

2

3 Introduction text for database documentation.

4

5 <oracle scheme="true"

6 doc="false"

7 host="11.51.126.8"

8 port="1521"

9 dbname="mydb"

10 user="scott"

11 password="tiger">

12 </oracle>

Tag parameters have the highest priority.

This way you can have documentation for several different databases in one foliant
project (even in one md-file if you like it so). It also allows you to put documentation
and scheme for you database separately by switching on/off doc and scheme params
in tags.

Filters
You can add filters to exclude some tables from the documentation. dbdocs supports
several SQL-like filtering operators and a determined list of filtering fields.

You can switch on filters either in foliant.yml file like this:

1 preprocessors:

2 - dbdoc:

3 filters:

4 eq:

5 schema: public

6 regex:

7 table_name: 'main_.+'

or in tag options using the same yaml-syntax:

1 <pgsql filters="

2 eq:

DBDoc | .December 12, 2021 205

3 schema: public

4 regex:

5 table_name: 'main_.+'">

6 </pgsql>

List of currently supported operators:

operator SQL equivalent description value

eq = equals literal
not_eq != does not equal literal
in IN contains list
not_in NOT IN does not contain list
regex ~ , REGEX_LIKE matches regular expression literal
not_regex !~, NOT REGEX_LIKE does not match regular expression literal

Note: regex and not_regex are not supported with Microsoft SQL
Server DBMS.

List of currently supported filtering fields:

field description

schema filter by database schema
table_name filter by database table names

The syntax for using filters in configuration files is following:

1 filters:

2 <operator>:

3 <field>: value

If value should be list like for in operator, use YAML-lists instead:

1 filters:

2 in:

3 schema:

4 - public

5 - corp

DBDoc | .December 12, 2021 206

About Templates
The structure of generated documentation is defined by jinja-templates. You can
choose what elements will appear in the documentation, change their positions, add
constant text, change layouts and more. Check the Jinja documentation for info on all
cool things you can do with templates.

If you don’t specify path to templates in the config-file and tag-options dbdoc will use
default templates.

If you wish to create your own template, the default ones may be a good starting
point.

— Default Oracle doc template.
— Default Oracle scheme template.
— Default PostgreSQL doc template.
— Default PostgreSQL scheme template.
— Default MySQL doc template.
— Default MySQL scheme template.
— Default SQL Server doc template.
— Default SQL Server scheme template.

Troubleshooting
If you get errors during build, especially errors concerning connection to the database,
you have to make sure that you are supplying the right parameters.

There may be a lot of possible causes for errors. For example, MS SQL Server may fail
to connect to local database if you specify host as localhost, you have to explicitly
write 0.0.0.0 or 127.0.0.1.

So your first action to root the source of your errors should be running a python console
and trying to connect to your database manually.

Here are sample snippets on how to connect to different databases.

PostgreSQL

psycopg2 library is required.

1 import psycopg2

2

3 con = psycopg2.connect(

4 "host=localhost "

DBDoc | .December 12, 2021 207

http://jinja.pocoo.org/docs/2.10/templates/
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/oracle/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/oracle/templates/scheme.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/pgsql/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/pgsql/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/mysql/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/mysql/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/mssql/templates/doc.j2
https://github.com/foliant-docs/foliantcontrib.dbdoc/blob/master/foliant/preprocessors/dbdoc/mssql/templates/doc.j2
https://pypi.org/project/psycopg2/

5 "port=5432 "

6 "dbname=MyDatabase "

7 "user=postgres"

8 "password=postgres"

9)

Oracle

cx_Oracle library is required.

1 import cx_Oracle

2

3 con = cx_Oracle.connect(

4 "Scott/Tiger@localhost:1521/MyDatabase"

5 encoding='UTF-8',

6 nencoding='UTF-8'

7)

MySQL

mysqlclient library is required.

1 from MySQLdb import _mysql

2

3 con = _mysql.connect(

4 host='localhost',

5 port=3306,

6 user='root',

7 passwd='password',

8 db='MyDatabase'

9)

Microsoft SQL Server

pyodbc library is required.

1 import pyodbc

2

3 con = pyodbc.connect(

4 "DRIVER={ODBC Driver 17 for SQL Server};"

5 "SERVER=0.0.0.0,1433;"

DBDoc | .December 12, 2021 208

https://oracle.github.io/python-cx_Oracle/
https://pypi.org/project/mysqlclient/
https://pypi.org/project/pyodbc/

6 "DATABASE=MyDatabase;"

7 "UID=Usernam;PWD=Password_0"

8)

Elasticsearch
This extension allows to integrate Foliant-managed documentation projects with Elas-
ticsearch search engine.

The main part of this extension is a preprocessor that prepares data for a search index.

Also this extension provides a simple working example of a client-side Web applica-
tion that may be used to perform searching. By editing HTML, CSS and JS code you
may customize it according to your needs.

Installation
To install the preprocessor, run the command:

$ pip install foliantcontrib.elasticsearch

To use an example of a client-side Web application for searching, download these
HTML, CSS, and JS files and open the file index.html in your Web browser.

Config
To enable the preprocessor, add elasticsearch to preprocessors section in
the project config:

1 preprocessors:

2 - elasticsearch

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - elasticsearch:

3 es_url: 'http://127.0.0.1:9200/'

4 index_name: ''

5 index_copy_name: ''

6 index_properties: {}

7 actions:

8 - delete

Elasticsearch | .December 12, 2021 209

https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html
https://github.com/foliant-docs/foliantcontrib.elasticsearch/tree/master/webapp_example/
https://github.com/foliant-docs/foliantcontrib.elasticsearch/tree/master/webapp_example/

9 - create

10 use_chapters: true

11 format: plaintext

12 escape_html: true

13 url_transform:

14 - '\/?index\.md$': '/'

15 - '\.md$': '/'

16 - '^([^\/]+)': '/\g<1>'

17 require_env: false

18 targets: []

es_url Elasticsearch API URL.

index_name Name of the index. Your index must have an explicitly specified name,
otherwise (by default) API URL will be invalid.

index_copy_name Name of the index copy when the copy action is used; see
below. If the index_copy_name is not set explicitly, and if the index_name

is specified, the index_copy_name value will be formed as the index_name

value with the _copy string appended to the end.

index_properties Settings and other properties that should be used when cre-
ating an index. If not specified (by default), the default Elasticsearch settings
will be used. More details are described below.

actions Sequence of actions that the preprocessor should to perform. Available
item values are: delete, create, copy. By default, the actions delete

and create are performed since in most cases it’s needed to remove and then
fully rebuild the index. The copy action is used to duplicate an index, i.e to
create a copy of the index index_name with the name index_copy_name.
This action may be useful when a common search index is created for multi-
ple Foliant projects, and the index may remain incomplete during for a long
time during their building. The copy action is not atomic. To perform it, the
preprocessor:

— marks the source index index_name as read-only;
— deletes the target index index_copy_name if it exists;
— clones the source index index_name and thereby creates the target index

index_copy_name;
— unmarks the source index index_name as read-only;

Elasticsearch | .December 12, 2021 210

— also unmarks the target index index_copy_name as read-only, since the
target index inherits the settings of the source one.

use_chapters If set to true (by default), the preprocessor applies only to the files
that are mentioned in the chapters section of the project config. Otherwise,
the preprocessor applies to all of the files of the project.

format Format that the source Markdown content should be converted to before
adding to the index; available values are: plaintext (by default), html,
markdown (for no conversion).

escape_html If set to true (by default), HTML syntax constructions in the content
converted to plaintext will be escaped by replacing & with &, < with
<, > with >, and " with ".

url_transform Sequence of rules to transform local paths of source Markdown
files into URLs of target pages. Each rule should be a dictionary. Its data is
passed to the re.sub() method: key as the pattern argument, and value
as the repl argument. The local path (possibly previously transformed) to the
source Markdown file relative to the temporary working directory is passed as
the string argument. The default value of the url_transform option is
designed to be used to build static websites with MkDocs backend.

require_env If set to true, the FOLIANT_ELASTICSEARCH environment vari-
able must be set to allow the preprocessor to perform any operations with Elas-
ticsearch index. This flag may be useful in CI/CD jobs.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

Usage
The preprocessor reads each source Markdown file and generates three fields for in-
dexing:

— url—target page URL;
— title—document title, it’s taken from the first heading of source Markdown con-

tent;
— content—source Markdown content, optionally converted into plain text or

HTML.

When all the files are processed, the preprocessor calls Elasticsearch API to create the
index.

Elasticsearch | .December 12, 2021 211

https://docs.python.org/3/library/re.html#re.sub

Optionally the preprocessor may call Elasticsearch API to delete previously created
index.

By using the index_properties option, you may override the default Elastic-
search settings when creating an index. Below is an example of JSON-formatted val-
ue of the index_properties option to create an index with Russian morphology
analysis:

1 {

2 "settings": {

3 "analysis": {

4 "filter": {

5 "ru_stop": {

6 "type": "stop",

7 "stopwords": "_russian_"

8 },

9 "ru_stemmer": {

10 "type": "stemmer",

11 "language": "russian"

12 }

13 },

14 "analyzer": {

15 "default": {

16 "tokenizer": "standard",

17 "filter": [

18 "lowercase",

19 "ru_stop",

20 "ru_stemmer"

21]

22 }

23 }

24 }

25 }

26 }

You may perform custom search requests to Elasticsearch API.

The simple client-side Web application example that is provided as a part of this
extension, performs requests like this:

Elasticsearch | .December 12, 2021 212

https://github.com/foliant-docs/foliantcontrib.elasticsearch/tree/master/webapp_example/

1 {

2 "query": {

3 "multi_match": {

4 "query": "foliant",

5 "type": "phrase_prefix",

6 "fields": ["title^3", "content"]

7 }

8 },

9 "highlight": {

10 "fields": {

11 "content": {}

12 }

13 },

14 "size": 50

15 }

Search results may look like that:

Elasticsearch | .December 12, 2021 213

Figure 18. Search Results

If you use self-hosted instance of Elasticsearch, you may need to configure it to append
CORS headers to HTTP API responses.

Epsconvert
EPSConvert is a tool to convert EPS images into PNG format.

Epsconvert | .December 12, 2021 214

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Installation

$ pip install foliantcontrib.epsconvert

Config
To enable the preprocessor, add epsconvert to preprocessors section in the
project config:

1 preprocessors:

2 - epsconvert

The preprocessor has a number of options:

1 preprocessors:

2 - epsconvert:

3 convert_path: convert

4 cache_dir: !path .epsconvertcache

5 image_width: 0

6 targets:

7 - pre

8 - mkdocs

9 - site

10 - ghp

convert_path Path to convert binary. By default, it is assumed that you have
this command in PATH. ImageMagick must be installed.

cache_dir Directory to store processed images. They may be reused later.
image_width Width of PNG images in pixels. By default (in case when the value

is 0), the width of each image is set by ImageMagick automatically. Default
behavior is recommended. If the width is given explicitly, file size may increase.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

EscapeCode and UnescapeCode
pypipypi v1.0.4v1.0.4

GitHubGitHub v1.0.2v1.0.2

EscapeCode and UnescapeCode | .December 12, 2021 215

https://imagemagick.org/
https://pypi.org/project/foliantcontrib.escapecode/
https://github.com/foliant-docs/foliantcontrib.escapecode
https://github.com/foliant-docs/foliantcontrib.escapecode

EscapeCode and UnescapeCode
EscapeCode and UnescapeCode preprocessors work in pair.

EscapeCode finds in the source Markdown content the parts that should not be mod-
ified by any next preprocessors. Examples of content that should be left raw: fence
code blocks, pre code blocks, inline code.

EscapeCode replaces these raw content parts with pseudo-XML tags recognized by
UnescapeCode preprocessor.

EscapeCode saves raw content parts into files. Later, UnescapeCode restores this con-
tent from files.

Also, before the replacement, EscapeCode normalizes the source Markdown content
to unify and simplify further operations. The preprocessor replaces CRLF with LF,
removes excessive whitespace characters, provides trailing newline, etc.

Installation
To install EscapeCode and UnescapeCode preprocessors, run:

$ pip install foliantcontrib.escapecode

See more details below.

Integration with Foliant and Includes
You may call EscapeCode and UnescapeCode explicitly, but these preprocessors are in-
tegrated with Foliant core (since version 1.0.10) and with Includes preprocessor (since
version 1.1.1).

The escape_code project’s config option, if set to true, provides applying Es-
capeCode before all other preprocessors, and applying UnescapeCode after all other
preprocessors. Also this option tells Includes preprocessor to apply EscapeCode to
each included file.

In this mode EscapeCode and UnescapeCode preprocessors deprecate _unescape pre-
processor.

1 > **Note**

2 >

EscapeCode and UnescapeCode | .December 12, 2021 216

3 > The preprocessor _unescape is a part of Foliant core.

It allows to use pseudo-XML tags in code examples. If you

want an opening tag not to be interpreted by any

preprocessor, precede this tag with the `<` character. The

preprocessor _unescape applies after all other preprocessors

and removes such characters.

Config example:

1 title: My Awesome Project

2

3 chapters:

4 - index.md

5 ...

6

7 escape_code: true

8

9 preprocessors:

10 ...

11 - includes

12 ...

13 ...

If the escape_code option isn’t used or set to false, backward compatibility mode
is involved. In this mode EscapeCode and UnescapeCode aren’t applied automatically,
but _unescape preprocessor is applied.

In more complicated case, you may pass some custom options to EscapeCode prepro-
cessor:

1 escape_code:

2 options:

3 ...

Custom options available in EscapeCode since version 1.0.2. Foliant core supports
passing custom options to EscapeCode preprocessor as the value of escape_code.

options parameter since version 1.0.11. Options are described below.

The Python package that includes EscapeCode and UnescapeCode preprocessors is
the dependence of Includes preprocessor since version 1.1.1. At the same time this

EscapeCode and UnescapeCode | .December 12, 2021 217

package isn’t a dependence of Foliant core. To use escape_code config option
in Foliant core, you have to install the package with EscapeCode and UnescapeCode
preprocessors separately.

Explicit Enabling
You may not want to use the escape_code option and call the preprocessors ex-
plicitly:

1 preprocessors:

2 - escapecode # usually the first list item

3 ...

4 - unescapecode # usually the last list item

Both preprocessors allow to override the path to the directory that is used to store
temporary files:

1 preprocessors:

2 - escapecode:

3 cache_dir: !path .escapecodecache

4 ...

5 - unescapecode:

6 cache_dir: !path .escapecodecache

The default values are shown in this example. EscapeCode and related UnescapeCode
must work with the same cache directory.

Note that if you use Includes preprocessor, and the included content doesn’t belong to
the current Foliant project, there’s no way to escape raw parts of this content before
Includes preprocessor is applied.

Config
Since version 1.0.2, EscapeCode preprocessor supports the option actions in addi-
tional to cache_dir.

The value of actions options should be a list of acceptable actions. By default, the
following list is used:

1 actions:

2 - normalize

3 - escape:

EscapeCode and UnescapeCode | .December 12, 2021 218

4 - fence_blocks

5 - pre_blocks

6 - inline_code

This default list may be overridden. For example:

1 actions:

2 - normalize

3 - escape:

4 - fence_blocks

5 - inline_code

6 - tags:

7 - plantuml

8 - seqdiag

9 - comments

Meanings of parameters:

— normalize—perform normalization;
— escape—perform escaping of certain types of raw content:

— fence_blocks—fence code blocks;
— pre_blocks—pre code blocks;
— inline_code—inline code;
— comments—HTML-style comments, also usual for Markdown;
— tags—content of certain tags with the tags themselves, for example

plantuml for <<plantuml>...</plantuml>.

Usage
Below you can see an example of Markdown content with code blocks and inline code.

1 # Heading

2

3 Text that contains some `inline code`.

4

5 Below is a fence code block, language is optional:

6

7 ```python

8 import this

9 ```

EscapeCode and UnescapeCode | .December 12, 2021 219

10

11 One more fence code block:

12

13 ~~~

14 # This is a comment that should not be interpreted as a

heading

15

16 print('Hello World')

17 ~~~

18

19 And this is a pre code block:

20

21 mov dx, hello;

22 mov ah, 9;

23 int 21h;

The preprocessor EscapeCode with default behavior will do the following replace-
ments:

1 # Heading

2

3 Text that contains some <<escaped hash="2

bb20aeb00314e915ecfefd86d26f46a"></escaped>.

4

5 Below is a fence code block, language is optional:

6

7 <<escaped hash="15e1e46a75ef29eb760f392bb2df4ebb"></escaped>

8

9 One more fence code block:

10

11 <<escaped hash="91c3d3da865e24c33c4b366760c99579"></escaped>

12

13 And this is a pre code block:

14

15 <<escaped hash="a1e51c9ad3da841d393533f1522ab17e"></escaped>

EscapeCode and UnescapeCode | .December 12, 2021 220

Escaped content parts will be saved into files located in the cache directory. The
names of the files correspond the values of the hash attributes. For example, that’s
the content of the file 15e1e46a75ef29eb760f392bb2df4ebb.md:

1 ```python

2 import this

3 ```

Flags
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

Conditional Blocks for Foliant
This preprocessors lets you exclude parts of the source based on flags defined in the
project config and environment variables, as well as current target and backend.

Installation

$ pip install foliantcontrib.flags

Config
Enable the propressor by adding it to preprocessors:

1 preprocessors:

2 - flags

Enabled project flags are listed in preprocessors.flags.flags:

1 preprocessors:

2 - flags:

3 flags:

4 - foo

Flags | .December 12, 2021 221

https://pypi.org/project/foliantcontrib.flags/
https://github.com/foliant-docs/foliantcontrib.flags

5 - bar

To set flags for the current session, define FOLIANT_FLAGS environment variable:

$ FOLIANT_FLAGS="spam, eggs"

You can use commas, semicolons, or spaces to separate flags.

Hint

To emulate a particular target or backend with a flag, use the special flags
target:FLAG and backend:FLAG where FLAG is your target or back-
end:

$ FOLIANT_FLAGS="target:pdf, backend:pandoc, spam

"

Usage
Conditional blocks are enclosed between <if>...</if> tags:

1 This paragraph is for everyone.

2

3 <if flags="management">

4 This parapraph is for management only.

5 </if>

A block can depend on multiple flags. You can pick whether all tags must be present
for the block to appear, or any of them (by default, kind="all" is assumed):

1 <if flags="spam, eggs" kind="all">

2 This is included only if both `spam` and `eggs` are set.

3 </if>

4

5 <if flags="spam, eggs" kind="any">

6 This is included if both `spam` or `eggs` is set.

7 </if>

You can also list flags that must not be set for the block to be included:

1 <if flags="spam, eggs" kind="none">

2 This is included only if neither `spam` nor `eggs` are set.

Flags | .December 12, 2021 222

3 </if>

You can check against the current target and backend instead of manually defined
flags:

1 <if targets="pdf">This is for pdf output</if><if targets="

site">This is for the site</if>

2

3 <if backends="mkdocs">This is only for MkDocs.</if>

Flatten
pypipypi v1.0.7v1.0.7

GitHubGitHub v1.0.7v1.0.7

Project Flattener for Foliant
This preprocessor converts a Foliant project source directory into a single Markdown
file containing all the sources, preserving order and inheritance.

This preprocessor is used by backends that require a single Markdown file as input
instead of a directory. The Pandoc backend is one such example.

Installation

$ pip install foliantcontrib.flatten

Config
This preprocessor is required by Pandoc backend, so if you use it, you don’t need to
install Flatten or enable it in the project config manually.

However, it’s still a regular preprocessor, and you can run it manually by listing it in
preprocessors:

1 preprocessors:

Flatten | .December 12, 2021 223

https://pypi.org/project/foliantcontrib.flatten/
https://github.com/foliant-docs/foliantcontrib.flatten

2 - flatten

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - flatten:

3 flat_src_file_name: __all__.md

4 keep_sources: false

flat_src_file_name Name of the flattened file that is created in the temporary
working directory.

keep_sources Flag that tells the preprocessor to keep Markdown sources in the
temporary working directory after flattening. If set to false, all Markdown files
excepting the flattened will be deleted from the temporary working directory.

Note

Flatten preprocessor uses Includes, so when you install Pandoc backend,
Includes preprocessor will also be installed, along with Flatten.

Glossary
pypipypi v1.0.0v1.0.0

GitHubGitHub v1.0.0v1.0.0

Glossary collector for Foliant
Glossary preprocessor collects terms and definitions from the files stated and inserts
them to specified places of the document.

Installation

$ pip install foliantcontrib.glossary

Glossary | .December 12, 2021 224

https://pypi.org/project/foliantcontrib.glossary/
https://github.com/foliant-docs/foliantcontrib.glossary

Config
To enable the preprocessor, add glossary to preprocessors section in the
project config.

1 preprocessors:

2 - glossary

The preprocessor has a number of options (default values stated below):

1 preprocessors:

2 - glossary:

3 term_definitions: 'term_definitions.md'

4 definition_mark: ': '

5 files_to_process: ''

term_definitions Local or remote file with terms and definitions in Pandoc def-
inition_lists notation (by default this file stored in foliant project folder, but you
can place it other folder). Also you can use includes in this file to join several
glossary files. In this case includes preprocessor should be stated before
glossary in foliant.yml preprocessors section. Note that if several defi-
nitions of one term are found, only first will be used.

definition_mark Preprocessor uses this string to determine, if the definition
should be inserted here. ": " for Pandoc definition_lists notation.

files_to_process You can set certain files to process by preprocessor.

Usage
Just add the preprocessor to the project config, set it up and enjoy the automatically
collected glossary in your document.

Example
foliant.yml

1 ...

2 chapters:

3 - text.md

4

5 preprocessors:

6 ...

Glossary | .December 12, 2021 225

https://pandoc.org/MANUAL.html#definition-lists
https://pandoc.org/MANUAL.html#definition-lists
https://foliant-docs.github.io/docs/preprocessors/includes/
https://pandoc.org/MANUAL.html#definition-lists

7 - includes

8 - glossary

9 ...

term_definitions.md

1 # Glossary

2

3 <include nohead="true">

4 $https://git.repo/repo_name_1$src/glossary_1.md

5 </include>

6

7 <include nohead="true">

8 $https://git.repo/repo_name_2$src/glossary_2.md

9 </include>

glossary_1.md from repo_1

1 # Glossary

2

3 Term 1

4

5 : Definition 1

6

7 Term 2

8

9 : Definition 2

10

11 Term 3

12

13 : Definition 3

glossary_2.md from repo_2

1 # Glossary

2

3 Term 4

4

5 : Definition 4

Glossary | .December 12, 2021 226

6

7 { some code, part of Definition 4 }

8

9 Third paragraph of definition 4.

10

11 Term 5

12

13 : Definition 5

text.md

1 # Main chapter

2

3 Some text.

4

5 # Glossary

6

7 : Term 1

8

9 : Term 4

10

11 : Term 2

__all__.md

1 # Main chapter

2

3 Some text.

4

5 # Glossary

6

7 Term 1

8

9 : Definition 1

10

11

12 Term 4

13

14 : Definition 4

Glossary | .December 12, 2021 227

15

16 { some code, part of Definition 4 }

17

18 Third paragraph of definition 4.

19

20

21 Term 2

22

23 : Definition 2

Graphviz
pypipypi v1.1.5v1.1.5

githubgithub v1.1.5v1.1.5

Graphviz Diagrams Preprocessor for Foliant
Graphviz is an open source graph visualization tool. This preprocessor converts
Graphviz diagram definitions in the source and converts them into images on the
fly during project build.

Installation

$ pip install foliantcontrib.graphviz

Config
To enable the preprocessor, add graphviz to preprocessors section in the
project config:

1 preprocessors:

2 - graphviz

The preprocessor has a number of options:

Graphviz | .December 12, 2021 228

https://pypi.org/project/foliantcontrib.graphviz/
https://github.com/foliant-docs/foliantcontrib.graphviz
http://plantuml.com/

1 preprocessors:

2 - graphviz:

3 cache_dir: !path .diagramscache

4 graphviz_path: dot

5 engine: dot

6 format: png

7 as_image: true

8 params:

9 ...

cache_dir Path to the directory with the generated diagrams. It can be a path
relative to the project root or a global one; you can use ~/ shortcut.

To save time during build, only new and modified diagrams are rendered.
The generated images are cached and reused in future builds.

graphviz_path Path to Graphviz launcher. By default, it is assumed that you have
the dot command in your PATH, but if Graphviz uses another command to
launch, or if the dot launcher is installed in a custom place, you can define it
here.

engine Layout engine used to process the diagram source. Available engines: (
circo, dot, fdp, neato, osage, patchwork, sfdp twopi). Default:
dot

format Output format of the diagram image. Available formats: tons of them. De-
fault: png

as_image If true — inserts scheme into document as md-image. If false —
inserts the file generated by GraphViz directly into the document (may be handy
for svg images). Default: true

params Params passed to the image generation command:

1 preprocessors:

2 - graphviz:

3 params:

4 Gdpi: 100

Graphviz | .December 12, 2021 229

https://graphviz.gitlab.io/_pages/doc/info/output.html

To see the full list of params, run the command that launches Graphviz,
with -? command line option.

Usage
To insert a diagram definition in your Markdown source, enclose it between <

graphviz>...</graphviz> tags:

1 ’

2 Heres a diagram:

3

4 <graphviz>

5 a -> b

6 </graphviz>

You can set any parameters in the tag options. Tag options have priority over the
config options so you can override some values for specific diagrams while having the
default ones set up in the config.

Tags also have two exclusive options: caption option — the markdown caption of
the diagram image and src — path to diagram source (relative to current file).

If src tag option is supplied, tag body is ignored. Diagram source is
loaded from external file.

1 Diagram with a caption:

2

3 <graphviz caption="Deployment diagram"

4 params="Earrowsize: 0.5"

5 src="diags/sample.gv">

6 </graphviz>

Note that command params listed in the params option are stated in
YAML format. Remember that YAML is sensitive to indentation so for sev-
eral params it is more suitable to use JSON-like mappings: {key1: 1,

key2: 'value2'}.

History
pypipypi v1.0.8v1.0.8

History | .December 12, 2021 230

https://pypi.org/project/foliantcontrib.history/
https://pypi.org/project/foliantcontrib.history/

GitHubGitHub v1.0.8v1.0.8

History
History is a preprocessor that generates single linear history of releases for multiple
Git repositories based on their changelog files, tags, or commits. The history may be
represented as Markdown, and as RSS feed.

Installation

$ pip install foliantcontrib.history

Config
To enable the preprocessor, add history to preprocessors section in the project
config:

1 preprocessors:

2 - history

The preprocessor has a number of options with the following default values:

1 - history:

2 repos: []

3 revision: master

4 name_from_readme: false

5 readme: README.md

6 from: changelog

7 merge_commits: true

8 changelog: changelog.md

9 source_heading_level: 1

10 target_heading_level: 1

11 target_heading_template: '[%date%] [%repo%](%link%) %

version%'

12 date_format: year_first

13 limit: 0

14 rss: false

History | .December 12, 2021 231

https://github.com/foliant-docs/foliantcontrib.history

15 rss_file: rss.xml

16 rss_title: 'History of Releases'

17 rss_link: ''

18 rss_description: ''

19 rss_language: en-US

20 rss_item_title_template: '%repo% %version%'

repos List of URLs of Git repositories that it’s necessary to generate history for.

Example:

1 repos:

2 - https://github.com/foliant-docs/foliant.git

3 - https://github.com/foliant-docs/foliantcontrib.

includes.git

revision Revision or branch name to use. Branches that are used for stable releases
must have the same names in all listed repositories.

name_from_readme Flag that tells the preprocessor to try to use the content of the
first heading of README file in each listed repository as the repo name. If the
flag set to false, or an attempt to get the first heading content is unsuccessful,
the repo name will be based on the repo URL.

readme Path to README file. README files must be located at the same paths in all
listed repositories.

from Data source to generate history: changelog—changelog file, tags—tags,
commits—all commits. Data sources of the same type will be used for all listed
repositories.

merge_commits Flag that tells the preprocessor to include merge commits into
history when from: commits is used.

changelog Path to changelog file. Changelogs must be located at the same paths
in all listed repositories.

source_heading_level Level of headings that precede descriptions of releases
in the source Markdown content. It must be the same for all listed repositories.

target_heading_level Level of headings that precede descriptions of releases
in the target Markdown content of generated history.

History | .December 12, 2021 232

target_heading_template Template for top-level headings in the target Mark-
down content. You may use any characters, and the variables: %date%—date,
%repo%—repo name, %link%—repo URL, %version%—version data (content
of source changelog heading, tag value, or commit hash).

date_format Output date format to use in the target Markdown content. If the
default value year_first is used, the date “September 4, 2019” will be rep-
resented as 2019-09-04. If the day_first value is used, this date will be
represented as 04.09.2019.

limit Maximum number of items to include into the target Markdown content; 0

means no limit.

rss Flag that tells the preprocessor to export the history into RSS feed. Note that
the parameters target_heading_level, target_heading_template,
date_format, and limit are applied to Markdown content only, not to RSS
feed content.

rss_file Subpath to the file with RSS feed. It’s relative to the temporary working
directory during building, to the directory of built project after building, and to
the rss_link value in URLs.

rss_title RSS channel title.

rss_link RSS channel link, e.g. https://foliant-docs.github.io/docs

/. If the rss parameter value is rss.xml, the RSS feed URL will be https

://foliant-docs.github.io/docs/rss.xml.

rss_description RSS channel description.

rss_language RSS channel language.

rss_item_title_template Template for titles of RSS feed items. You may use
any characters, and the variables: %repo%—repo name, %version%—version
data.

Usage
To insert some history into Markdown content, use the <history></history>

tags:

1 Some optional content here.

History | .December 12, 2021 233

2

3 <history></history>

4

5 More optional content.

If no attributes specified, the values of options from the project config will be used.

You may override each config option value with the attribute of the same name. Ex-
ample:

1 <history

2 repos="https://github.com/foliant-docs/foliantcontrib.

mkdocs.git"

3 revision="develop"

4 limit="5"

5 rss="true"

6 rss_file="some_another.xml"

7 ...

8 >

9 </history>

ImageMagick
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

ImageMagick Preprocessor
This tool provides additional processing of images that referred in Markdown source,
with ImageMagick.

Installation

$ pip install foliantcontrib.imagemagick

ImageMagick | .December 12, 2021 234

https://pypi.org/project/foliantcontrib.imagemagick/
https://github.com/foliant-docs/foliantcontrib.imagemagick
https://imagemagick.org/

Config
To enable the preprocessor, add imagemagick to preprocessors section in the
project config:

1 preprocessors:

2 - imagemagick

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - imagemagick:

3 convert_path: convert

4 cache_dir: .imagemagickcache

convert_path Path to convert binary, a part of ImageMagick.
cache_dir Directory to store processed images. These files can be reused later.

Usage
Suppose you want to apply the following command to your picture image.eps:

$ convert image.eps -resize 600 -background Orange label:'

Picture' +swap -gravity Center -append image.jpg

This command takes the source EPS image image.eps, resizes it, puts a text label
over the picture, and writes the result into new file image.jpg. The suffix of output
file name specifies that the image must be converted into JPEG format.

To use the ImageMagick preprocessor to do the same, enclose one or more image
references in your Markdown source between <magick> and </magick> tags.

1 <magick command_params="-resize 600 -background Orange label

:'Picture' +swap -gravity Center -append" output_format="jpg

">

2 (leading exclamation mark here)[Optional Caption](image.eps)

3 </magick>

Use output_format attribute to specify the suffix of output file name. The whole
output file name will be generated automatically.

Use command_params attribute to specify the string of parameters that should be
passed to ImageMagick convert binary.

ImageMagick | .December 12, 2021 235

Instead of using command_params attribute, you may specify each parameter as its
own attribute with the same name:

1 <magick resize="600" background="Orange label:'Picture' +

swap" gravity="Center" append="true" output_format="jpg">

2 (leading exclamation mark here)[Optional Caption](image.eps)

3 </magick>

ImgCaptions
ImgCaptions is a preprocessor that generates visible captions for the images from
alternative text descriptions of the images. The preprocessor is useful in projects
built with MkDocs or another backend that provides HTML output.

Installation

$ pip install foliantcontrib.imgcaptions

Usage
To enable the preprocessor, add imgcaptions to preprocessors section in the
project config:

1 preprocessors:

2 - imgcaptions

The preprocessor supports the following options:

1 - imgcaptions:

2 stylesheet_path: !path imgcaptions.css

3 template: <p class="image_caption">{caption}</p>

4 targets:

5 - pre

6 - mkdocs

7 - site

8 - ghp

stylesheet_path Path to the CSS stylesheet file. This stylesheet should define
rules for the .image_caption class. Default path is imgcaptions.css.
If stylesheet file does not exist, default built-in stylesheet will be used.

ImgCaptions | .December 12, 2021 236

template Template string representing the HTML tag of the caption to be placed
after the image. The template should contain the {caption} variable that will
be replaced with the image caption. Default: <p class="image_caption

">{caption}</p>.
targets Allowed targets for the preprocessor. If not specified (by default), the pre-

processor applies to all targets.

Image definition example:

(leading exclamation mark here)[My Picture](picture.png)

This Markdown source will be finally transformed into the HTML code:

1 <p></p>

2 <p class="image_caption">My Picture</p>

(Note that ImgCaptions preprocessor does not convert Markdown syntax into HTML;
it only inserts HTML tags like <p class="image_caption">My Picture</p>

into Markdown code after the image definitions. Empty alternative text descriptions
are ignored.)

ImgConvert
ImgConvert is a tool to convert images from an arbitrary format into PNG.

Installation

$ pip install foliantcontrib.imgconvert

Config
To enable the preprocessor, add imgconvert to preprocessors section in the
project config:

1 preprocessors:

2 - imgconvert

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - imgconvert:

3 convert_path: convert

ImgConvert | .December 12, 2021 237

4 cache_dir: !path .imgconvertcache

5 image_width: 0

6 formats: {}

convert_path Path to convert binary. By default, it is assumed that you have
this command in PATH. ImageMagick must be installed.

cache_dir Directory to store processed images. They may be reused later.
image_width Width of PNG images in pixels. By default (in case when the value

is 0), the width of each image is set by ImageMagick automatically. Default
behavior is recommended. If the width is given explicitly, file size may increase.

formats Settings that apply to each format of source images.

The formats option may be used to define lists of targets for each format. If targets
for a format are not specified explicitly, the preprocessor will be applied to all targets.

Example:

1 formats:

2 eps:

3 targets:

4 - site

5 svg:

6 targets:

7 - docx

Formats should be named in lowercase.

Includes
pypipypi v1.1.13v1.1.13

GitHubGitHub v1.1.13v1.1.13

Includes | .December 12, 2021 238

https://imagemagick.org/
https://pypi.org/project/foliantcontrib.includes/
https://github.com/foliant-docs/foliantcontrib.includes

Includes for Foliant
Includes preprocessor lets you reuse parts of other documents in your Foliant project
sources. It can include from files on your local machine and remote Git repositories.
You can include entire documents as well as parts between particular headings, re-
moving or normalizing included headings on the way.

Installation

$ pip install foliantcontrib.includes

Config
To enable the preprocessor with default options, add includes to
preprocessors section in the project config:

1 preprocessors:

2 - includes

The preprocessor has a number of options:

1 preprocessors:

2 - includes:

3 cache_dir: !path .includescache

4 recursive: true

5 extensions:

6 - md

7 - j2

8 aliases:

9 ...

cache_dir Path to the directory for cloned Git repositories. It can be a path relative
to the project path or a global one; you can use ~/ shortcut.

Note

To include files from remote repositories, the preprocessor clones
them. To save time during build, cloned repositories are stored and
reused in future builds.

recursive Flag that defines whether includes in included documents should be
processed.

Includes | .December 12, 2021 239

extensions List of file extensions that defines the types of files which should be
processed looking for include statements. Might be useful if you need to in-
clude some content from third-party sources into non-Markdown files like con-
figs, templates, reports, etc. Defaults to [md].

aliases Mapping from aliases to Git repository URLs. Once defined here, an alias
can be used to refer to the repository instead of its full URL.

Note

Aliases are available only within the legacy syntax of include state-
ments (see below).

For example, if you set this alias in the config:

1 - includes:

2 aliases:

3 foo: https://github.com/boo/bar.git

4 baz: https://github.com/foo/far.git#develop

you can include the content of doc.md files from these repositories using the
following syntax:

1 <include>foopath/to/doc.md</include>

2

3 <include>$baz#master$path/to/doc.md</include>

Note that in the second example the default revision (develop) will be over-
ridden with the custom one (master).

Usage
The preprocessor allows two syntax variants for include statements.

The legacy syntax is simpler and shorter but less flexible. There are no plans to extend
it.

The new syntax introduced in version 1.1.0 is stricter and more flexible. It is more
suitable for complex cases, and it can be easily extended in the future. This is the
preferred syntax.

Both variants of syntax use the <include>...</include> tags.

If the included file is specified between the tags, it’s the legacy syntax. If the file is
referenced in the tag attributes (src, repo_url, path), it’s the new one.

Includes | .December 12, 2021 240

The New Syntax

To enforce using the new syntax rules, put no content between <include>...</

include> tags, and specify a local file or a file in a remote Git repository in tag
attributes.

To include a local file, use the src attribute:

1 Text below is taken from another document.

2

3 <include src="path/to/another/document.md"></include>

To include a file from a remote Git repository, use the repo_url and path attributes:

1 Text below is taken from a remote repository.

2

3 <include repo_url="https://github.com/foo/bar.git" path="

path/to/doc.md"></include>

You have to specify the full remote repository URL in the repo_url attribute, aliases
are not supported here.

Optional branch or revision can be specified in the revision attribute:

1 Text below is taken from a remote repository on branch

develop.

2

3 <include repo_url="https://github.com/foo/bar.git" revision

="develop" path="path/to/doc.md"></include>

Attributes

src Path to the local file to include.

url HTTP(S) URL of the content that should be included.

repo_url Full remote Git repository URL without a revision.

path Path to the file inside the remote Git repository.

Note

If you are using the new syntax, the src attribute is required to
include a local file, url is required to include a remote file, and the

Includes | .December 12, 2021 241

repo_url and path attributes are required to include a file from a
remote Git repository. All other attributes are optional.

Note

Foliant 1.0.9 supports the processing of attribute values as YAML.
You can precede the values of attributes by the !path, !

project_path, and !rel_path modifiers (i.e. YAML tags). These
modifiers can be useful in the src, path, and project_root

attributes.

revision Revision of the Git repository.

from_heading Full content of the starting heading when it’s necessary to include
some part of the referenced file content. If the to_heading, to_id, or
to_end attribute is not specified, the preprocessor cuts the included content
to the next heading of the same level. The referenced heading is included.

to_heading Full content of the ending heading when it’s necessary to include some
part of the referenced file content. The referenced heading will not be included.

from_id ID of the starting heading or starting anchor when it’s necessary to include
some part of the referenced file content. The from_id attribute has higher
priority than from_heading. If the to_heading, to_id, or to_end

attribute is not specified, the preprocessor cuts the included content to the next
heading of the same level. The referenced id is included.

NOTE: If you want from_id and to_id features to work with anchors,
make sure that anchors preprocessor is listed after includes in foliant.yml.

to_id ID of the ending heading or ending anchor when it’s necessary to include some
part of the referenced file content. The to_id attribute has higher priority than
to_heading. The referenced id will not be included.

to_end Flag that tells the preprocessor to cut to the end of the included content.
Otherwise, if from_heading or from_id is specified, the preprocessor cuts
the included content to the next heading of the same level as the starting head-
ing, or the heading that precedes the starting anchor.

Example:

Includes | .December 12, 2021 242

https://foliant-docs.github.io/docs/preprocessors/anchors/

1 ## Some Heading {#custom_id}

2

3 <anchor>one_more_custom_id</anchor>

Here Some Heading {#custom_id} is the full content of the heading,
custom_id is its ID, and one_more_custom_id is the ID of the anchor.

wrap_code Attribute that allows to mark up the included content as fence
code block or inline code by wrapping the content with additional Mark-
down syntax constructions. Available values are: triple_backticks

—to add triple backticks separated with newlines before and after the in-
cluded content; triple_tildas—to do the same but using triple tildas;
single_backticks—to add single backticks before and after the included
content without adding extra newlines. Note that this attribute doesn’t af-
fect the included content. So if the content consists of multiple lines, and the
wrap_code attribute with the value single_backticks is set, all newlines
within the content will be kept. To perform forced conversion of multiple lines
into one, use the inline attribute.

code_language Language of the included code snippet that should be addition-
ally marked up as fence code block by using the wrap_code attribute
with the value triple_backticks or triple_tildas. Note that the
code_language attribute doesn’t take effect to inline code that is obtained
when the single_backticks value is used. The value of this attribute
should be a string without whitespace characters, usually in lowercase; exam-
ples: python, bash, json.

Optional Attributes Supported in Both Syntax Variants

sethead The level of the topmost heading in the included content. Use it to guaran-
tee that the included text does not break the parent document’s heading order:

1 # Title

2

3 ## Subtitle

4

5 <include src="other.md" sethead="3"></include>

nohead Flag that tells the preprocessor to strip the starting heading from the includ-
ed content:

Includes | .December 12, 2021 243

1 # My Custom Heading

2

3 <include src="other.md" from_heading="Original Heading"

nohead="true"></include>

Default is false.

By default, the starting heading is included to the output, and the ending head-
ing is not. Starting and ending anchors are never included into the output.

inline Flag that tells the preprocessor to replace sequences of whitespace charac-
ters of many kinds (including \r, \n, and \t) with single spaces () in the
included content, and then to strip leading and trailing spaces. It may be useful
in single-line table cells. Default value is false.

project_root Path to the top-level (“root”) directory of Foliant project that the
included file belongs to. This option may be needed to resolve the !path and
!project_path modifiers in the included content properly.

Note
By default, if a local file is included, project_root points to the
top-level directory of the current Foliant project, and if a file in a
remote Git repository is referenced, project_root points to the
top-level directory of this repository. In most cases you don’t need to
override the default behavior.

Different options can be combined. For example, use both sethead and nohead if
you need to include a section with a custom heading:

1 # My Custom Heading

2

3 <include src="other.md" from_heading="Original Heading"

sethead="1" nohead="true"></include>

The Legacy Syntax

This syntax was the only supported in the preprocessor up to version 1.0.11. It’s weird
and cryptic, you had to memorize strange rules about $, # and stuff. The new syntax
described above is much cleaner.

The legacy syntax is kept for backward compatibility. To use it, put the reference to
the included file between <include>...</include> tags.

Includes | .December 12, 2021 244

Local path example:

1 Text below is taken from another document.

2

3 <include>path/to/another/document.md</include>

The path may be either relative to currently processed Markdown file or absolute.

To include a document from a remote Git repository, put its URL between $s before
the document path:

1 Text below is taken from a remote repository.

2

3 <include>

4 $https://github.com/foo/bar.git$path/to/doc.md

5 </include>

If the repository alias is defined in the project config, you can use it instead of the
URL:

1 - includes:

2 aliases:

3 foo: https://github.com/foo/bar.git

And then in the source:

<include>foopath/to/doc.md</include>

You can also specify a particular branch or revision:

1 Text below is taken from a remote repository on branch

develop.

2

3 <include>$foo#develop$path/to/doc.md</include>

To include a part of a document between two headings, use the #Start:Finish

syntax after the file path:

1 Include content from “”Intro up to “”Credits:

2

3 <include>sample.md#Intro:Credits</include>

4

Includes | .December 12, 2021 245

5 Include content from start up to “”Credits:

6

7 <include>sample.md#:Credits</include>

8

9 Include content from “”Intro up to the next heading of the

same level:

10

11 <include>sample.md#Intro</include>

In the legacy syntax, problems may occur with the use of $, #, and : characters in
filenames and headings, since these characters may be interpreted as delimeters.

Macros
pypipypi v1.0.4v1.0.4

GitHubGitHub v1.0.4v1.0.4

Macros for Foliant
Macro is a string with placeholders that is replaced with predefined content during
documentation build. Macros are defined in the config.

Installation

$ pip install foliantcontrib.macros

Config
Enable the preprocessor by adding it to preprocessors and listing your macros in
macros dictionary:

1 preprocessors:

2 - macros:

3 macros:

4 foo: This is a macro definition.

Macros | .December 12, 2021 246

https://pypi.org/project/foliantcontrib.macros/
https://github.com/foliant-docs/foliantcontrib.macros

5 bar: "This is macro with a parameter: {param}"

Usage
Here’s the simplest usecase for macros:

1 preprocessors:

2 - macros:

3 macros:

4 support_number: "8 800 123-45-67"

Now, every time you need to insert your support phone number, you put a macro
instead:

1 Call you support team: <macro>support_number</macro>.

2

3 Here's the number again: <m>support_number</m>.

Macros support params. This simple feature may make your sources a lot tidier:

1 preprocessors:

2 - macros:

3 macros:

4 jira: "https://mycompany.jira.server.us/jira/ticket?

ID={ticket_id}"

Now you don’t need to remember the address of your Jira server if you want to refer-
ence a ticket:

Link to jira ticket: <macro ticket_id="DOC-123">jira</macro>

Realworld example
You can combine Macros with tags by other Foliant preprocessors.

This can useful in documentation that should be built into multiple targets, e.g. site
and pdf, when the same thing is done differently in one target than in the other.

For example, to reference a page in MkDocs, you just put the Markdown file in the
link:

Here is [another page](another_page.md).

Macros | .December 12, 2021 247

But when building documents with Pandoc all sources are flattened into a single Mark-
down, so you refer to different parts of the document by anchor links:

Here is [another page](#another_page).

This can be implemented using the Flags preprocessor and its <if></if> tag:

Here is [another page](<if backends="pandoc">#another_page</

if><if backends="mkdocs">another_page.md</if>).

This bulky construct quickly gets old when you use many cross-references in your
documentation.

To make your sources cleaner, move this construct to the config as a reusable macro:

1 preprocessors:

2 - macros:

3 macros:

4 ref: <if backends="pandoc">{pandoc}</if><if backends

="mkdocs">{mkdocs}</if>

5 - flags

And use it in the source:

Here is [another page](<macro pandoc="#another_page" mkdocs=

"another_page.md">ref</macro>).

Just remember, that in this use case macros preprocessor must go before
flags preprocessor in the config. This way macros will be already re-
solved at the time flags starts working.

Mermaid
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

Mermaid | .December 12, 2021 248

https://foliant-docs.github.io/docs/preprocessors/flags/
https://pypi.org/project/foliantcontrib.mermaid/
https://github.com/foliant-docs/foliantcontrib.mermaid

Mermaid Diagrams Preprocessor for Foliant
Mermaid is an open source diagram visualization tool. This preprocessor converts
Mermaid diagram definitions in your Markdown files into images on the fly during
project build.

Installation

$ pip install foliantcontrib.mermaid

Please note that to use this preprocessor you will also need to install Mermaid and
Mermaid CLI:

1 $ npm install mermaid # installs locally

2 $ npm install mermaid.cli

Config
To enable the preprocessor, add mermaid to preprocessors section in the project
config:

1 preprocessors:

2 - mermaid

The preprocessor has a number of options:

1 preprocessors:

2 - mermaid:

3 cache_dir: !path .diagramscache

4 mermaid_path: !path node_modules/.bin/mmdc

5 format: svg

6 params:

7 ...

cache_dir Path to the directory with the generated diagrams. It can be a path
relative to the project root or a global one; you can use ~/ shortcut.

To save time during build, only new and modified diagrams are rendered.
The generated images are cached and reused in future builds.

Mermaid | .December 12, 2021 249

https://mermaidjs.github.io/

mermaid_path Path to Mermaid CLI binary. If you installed Mermaid locally this
parameter is required. Default: mmdc.

format Generated image format. Available: svg, png, pdf. Default svg.

params Params passed to the image generation command:

1 preprocessors:

2 - mermaid:

3 params:

4 theme: forest

To see the full list of available params, run mmdc -h or check here.

Usage
To insert a diagram definition in your Markdown source, enclose it between <

mermaid>...</mermaid> tags:

1 ’

2 Heres a diagram:

3

4 <mermaid>

5 graph TD;

6 A-->B;

7 </mermaid>

You can set any parameters in the tag options. Tag options have priority over the
config options so you can override some values for specific diagrams while having the
default ones set up in the config.

Tags also have an exclusive option caption— the markdown caption of the diagram
image.

1 Diagram with a caption:

2

3 <mermaid caption="Deployment diagram"

4 params="theme: dark">

5 </mermaid>

Mermaid | .December 12, 2021 250

https://github.com/mermaidjs/mermaid.cli#options

Note that command params listed in the params option are stated in
YAML format. Remember that YAML is sensitive to indentation so for sev-
eral params it is more suitable to use JSON-like mappings: {key1: 1,

key2: 'value2'}.

MetaGraph

MetaGraph preprocessor for Foliant
Preprocessor generates Graphviz diagrams of meta sections in the project.

Installation

$ pip install foliantcontrib.metagraph

Config

1 preprocessors:

2 - metagraph:

3 natural: false

4 directed: false

5 draw_all: false

natural if true — the graph is generated based on “natural” section structure:
main sections are connected to the inner sections, which are connected to their
child sections and so on. If false — the connections are deretmined by the
relates meta section of each chapter. Default: false

directed If true — draws a directed graph (with arrows). Default: false

draw_all If true — draws all sections, except those which have meta field draw:

false. If false— draws only sections which have meta field draw: true.
Default: false

MetaGraph | .December 12, 2021 251

https://pypi.org/project/foliantcontrib.metagraph/
https://github.com/foliant-docs/foliantcontrib.metagraph

Usage
First set up a few meta sections:

1 <meta title="Main document" id="main" relates="['first', '

sub']" draw="true"></meta>

2

3 # First title

4 <meta id="first" draw="true"></meta>

5

6 Lorem ipsum dolor sit amet, consectetur adipisicing elit.

Nesciunt, atque.

7

8 ## Subtitle

9

10 <meta id="sub" draw="true"></meta>

Then add a metagraph tag somewhere in the project:

<metagraph></metagraph>

MultilineTables
This preprocessor converts tables to multiline and grid format before creating docu-
ment (very useful especially for pandoc processing). It helps to make tables in doc
and pdf formats more proportional — column with more text in it will be more wide.
Also it helps whith processing of extremely wide tables with pandoc. Convertation to
the grid format allows arbitrary cell’ content (multiple paragraphs, code blocks, lists,
etc.).

Installation

$ pip install foliantcontrib.multilinetables

Config
To enable the preprocessor with default options, add multilinetables to
preprocessors section in the project config:

1 preprocessors:

MultilineTables | .December 12, 2021 252

2 - multilinetables

The preprocessor has a number of options (best values set by default):

1 preprocessors:

2 - multilinetables:

3 rewrite_src_files: false

4 min_table_width: 100

5 keep_narrow_tables: true

6 table_columns_to_scale: 3

7 enable_hyphenation: false

8 hyph_combination: '
'

9 convert_to_grid: false

10 targets:

11 - docx

12 - pdf

rewrite_src_file You can update source files after each use of preprocessor. Be
careful, previous data will be deleted.

min_table_width Wide markdown tables will be shrinked to this width in symbols.
This parameter affects scaling - change it if table columns are merging.

keep_narrow_tables If true narrow tables will not be stretched to minimum
table width.

table_columns_to_scale Minimum amount of columns to process the table.
enable_hyphenation Switch breaking text in table cells with the tag set in

hyph_combination. Good for lists, paragraphs, etc.
hyph_combination Custom tag to break a text in multiline tables.
convert_to_grid If true tables will be converted to the grid format, that allows

arbitrary cell’ content (multiple paragraphs, code blocks, lists, etc.).
targets Allowed targets for the preprocessor. If not specified (by default), the pre-

processor applies to all targets.

Usage
Just add preprocessor to the project config and enjoy the result.

MultilineTables | .December 12, 2021 253

Pgsqldoc
pypipypi v1.1.7v1.1.7

GitHubGitHub v1.1.7v1.1.7

PostgreSQL Docs Generator for Foliant
This preprocessor is DEPRECATED. Please, use DBDoc instead.

This preprocessor generates simple documentation of a PostgreSQL database based
on its structure. It uses Jinja2 templating engine for customizing the layout and Plan-
tUML for drawing the database scheme.

Installation

$ pip install foliantcontrib.pgsqldoc

Config
To enable the preprocessor, add pgsqldoc to preprocessors section in the
project config:

1 preprocessors:

2 - pgsqldoc

The preprocessor has a number of options:

1 preprocessors:

2 - pgsqldoc:

3 host: localhost

4 port: 5432

5 dbname: postgres

6 user: postgres

7 password: ''

8 draw: false

9 filters:

Pgsqldoc | .December 12, 2021 254

https://pypi.org/project/foliantcontrib.pgsqldoc/
https://github.com/foliant-docs/foliantcontrib.pgsqldoc
https://github.com/foliant-docs/foliantcontrib.dbdoc
http://jinja.pocoo.org/
http://plantuml.com/
http://plantuml.com/

10 ...

11 doc_template: pgsqldoc.j2

12 scheme_template: scheme.j2

host PostgreSQL database host address. Default: localhost

port PostgreSQL database port. Default: 5432

dbname PostgreSQL database name. Default: postgres

user PostgreSQL user name. Default: postgres

passwrod PostgreSQL user password.
draw If this parameter is true — preprocessor would generate scheme of the

database and add it to the end of the document. Default: false

filters SQL-like operators for filtering the results. More info in the Filters section.
doc_template Path to jinja-template for documentation. Path is relative to the

project directory. Default: pgsqldoc.j2

scheme_template Path to jinja-template for scheme. Path is relative to the project
directory. Default: scheme.j2

Usage
Add a <pgsqldoc></pgsqldoc> tag at the position in the document where the
generated documentation of a PostgreSQL database should be inserted:

1 # Introduction

2

3 This document contains the most awesome automatically

generated documentation of our marvellous database.

4

5 <pgsqldoc></pgsqldoc>

Each time the preprocessor encounters the tag <pgsqldoc></pgsqldoc> it in-
serts the whole generated documentation text instead of it. The connection parame-
ters are taken from the config-file.

You can also specify some parameters (or all of them) in the tag options:

1 # Introduction

2

3 Introduction text for database documentation.

4

5 <pgsqldoc draw="true"

Pgsqldoc | .December 12, 2021 255

6 host="11.51.126.8"

7 port="5432"

8 dbname="mydb"

9 user="scott"

10 password="tiger">

11 </pgsqldoc>

Tag parameters have the highest priority.

This way you can have documentation for several different databases in one foliant
project (even in one md-file if you like it so).

Filters
You can add filters to exclude some tables from the documentation. Pgsqldocs sup-
ports several SQL-like filtering operators and a determined list of filtering fields.

You can switch on filters either in foliant.yml file like this:

1 preprocessors:

2 - pgsqldoc:

3 filters:

4 eq:

5 schema: public

6 regex:

7 table_name: 'main_.+'

or in tag options using the same yaml-syntax:

1 <pgsqldoc filters="

2 eq:

3 schema: public

4 regex:

5 table_name: 'main_.+'">

6 </pgsqldoc>

List of currently supported operators:

operator SQL equivalent description value

eq = equals literal
not_eq != does not equal literal
in IN contains list

Pgsqldoc | .December 12, 2021 256

operator SQL equivalent description value

not_in NOT IN does not contain list
regex ~ matches regular expression literal
not_regex !~ does not match regular expression literal

List of currently supported filtering fields:

field description

schema filter by PostgreSQL database schema
table_name filter by database table names

The syntax for using filters in configuration files is following:

1 filters:

2 <operator>:

3 <field>: value

If value should be list like for in operator, use YAML-lists instead:

1 filters:

2 in:

3 schema:

4 - public

5 - corp

About Templates
The structure of generated documentation is defined by jinja-templates. You can
choose what elements will appear in the documentation, change their positions, add
constant text, change layouts and more. Check the Jinja documentation for info on all
cool things you can do with templates.

If you don’t specify path to templates in the config-file and tag-options pgsqldoc will
use default paths:

— <Project_path>/pgsqldoc.j2 for documentation template;
— <Project_path>/scheme.j2 for database scheme source template.

If pgsqldoc can’t find these templates in the project dir it will generate default tem-
plates and put them there.

Pgsqldoc | .December 12, 2021 257

http://jinja.pocoo.org/docs/2.10/templates/

So if you accidentally mess things up while experimenting with templates you can
always delete your templates and run preprocessor — the default ones will appear in
the project dir. (But only if the templates are not specified in config-file or their names
are the same as defaults).

One more useful thing about default templates is that you can find a detailed descrip-
tion of the source data they get from pgsqldoc in the beginning of the template.

Plantuml
pypipypi v1.0.10v1.0.10

GitHubGitHub v1.0.10v1.0.10

PlantUML Diagrams Preprocessor for Foliant
PlantUML is a tool to generate diagrams from plain text. This preprocessor finds
PlantUML diagrams definitions in the source and converts them into images on the
fly during project build.

Installation

$ pip install foliantcontrib.plantuml

Config
To enable the preprocessor, add plantuml to preprocessors section in the
project config:

1 preprocessors:

2 - plantuml

The preprocessor has a number of options:

1 preprocessors:

2 - plantuml:

3 cache_dir: !path .diagramscache

Plantuml | .December 12, 2021 258

https://pypi.org/project/foliantcontrib.plantuml/
https://github.com/foliant-docs/foliantcontrib.plantuml
http://plantuml.com/

4 plantuml_path: plantuml

5 format: png

6 params:

7 ...

8 parse_raw: true

9 as_image: true

cache_dir Path to the directory with the generated diagrams. It can be a path
relative to the project root or a global one; you can use ~/ shortcut.

Note

To save time during build, only new and modified diagrams are ren-
dered. The generated images are cached and reused in future builds.

plantuml_path Path to PlantUML launcher. By default, it is assumed that you have
the command plantuml in your PATH, but if PlantUML uses another command
to launch, or if the plantuml launcher is installed in a custom place, you can
define it here.

format Diagram format, list of supported formats. Default: png.

Another way to specify format is to use t<format> option in params.

params Params passed to the image generation command:

1 preprocessors:

2 - plantuml:

3 params:

4 config: !path plantuml.cfg

To see the full list of params, run the command that launches PlantUML, with
-h command line option.

parse_raw If this flag is true, the preprocessor will also process all PlantUML di-
agrams which are not wrapped in <plantuml>...</plantuml> tags. De-
fault value is false.

as_image If true — inserts scheme into document as md-image. If false —
inserts the file generated by PlantUML directly into the document (only for svg
format). Default: true

Plantuml | .December 12, 2021 259

https://plantuml.com/command-line

Usage
To insert a diagram definition in your Markdown source, enclose it between <

plantuml>...</plantuml> tags (indentation inside tags is optional):

1 ’

2 Heres a diagram:

3

4 <plantuml>

5 @startuml

6 ...

7 @enduml

8 </plantuml>

To set a caption, use caption option:

1 Diagram with a caption:

2

3 <plantuml caption="Sample diagram from the official site">

4 @startuml

5 ...

6 @enduml

7 </plantuml>

You can override values from the preprocessor config for each diagram.

1 By default, diagrams are in PNG. But this diagram is in EPS:

2

3 <plantuml caption="Vector diagram" format="eps">

4 @startuml

5 ...

6 @enduml

7 </plantuml>

Sometimes it can be necessary to process auto-generated documents that contain
multiple PlantUML diagrams definitions without using Foliant-specific tags syntax.
Use the parse_raw option in these cases.

Plantuml | .December 12, 2021 260

RAMLDoc
pypipypi v1.0.2v1.0.2

RAML API Docs Generator for Foliant
This preprocessor generates Markdown documentation from RAML spec files. It uses
raml2html converter with raml2html-full-markdown-theme.

raml2html uses Nunjucks templating system.

Installation
First install raml2html and the markdown theme:

$ npm install -g raml2html raml2html-full-markdown-theme

Then install the preprocessor:

$ pip install foliantcontrib.ramldoc

Config
To enable the preprocessor, add ramldoc to preprocessors section in the project
config:

1 preprocessors:

2 - ramldoc

The preprocessor has a number of options:

1 preprocessors:

2 - ramldoc:

3 spec_url: http://localhost/my_api.raml

4 spec_path: !path my_api.raml

5 template_dir: !path custom_templates

6 raml2html_path: raml2html

RAMLDoc | .December 12, 2021 261

https://pypi.org/project/foliantcontrib.ramldoc/
https://raml.org/
https://github.com/raml2html/raml2html
https://github.com/Vanderhoof/raml2html-full-markdown-theme
https://mozilla.github.io/nunjucks/

spec_url URL to RAML spec file. If it is a list — preprocessor picks the first working
URL.

spec_path Local path to RAML spec file.

If both URL and path are specified — preprocessor first tries to fetch spec
from URL, and then (if that fails) looks for the file on local path.

template_dir Path to directory with Nunjucks templates. If not specified — default
template is used. The main template in the directory must have a name root.

nunjucks.
raml2html_path Path to raml2html binary. Default: raml2html

Usage
Add a <ramldoc></ramldoc> tag at the position in the document where the gen-
erated documentation should be inserted:

1 # Introduction

2

3 This document contains the automatically generated

documentation of our API.

4

5 <ramldoc></ramldoc>

Each time the preprocessor encounters the tag <ramldoc></ramldoc> it inserts
the whole generated documentation text instead of it. The path or url to RAML spec
file are taken from foliant.yml.

You can also specify some parameters (or all of them) in the tag options:

1 # Introduction

2

3 Introduction text for API documentation.

4

5 <ramldoc spec_url="http://localhost/my_api.raml"

6 template_dir="assets/templates">

7 </ramldoc>

Tag parameters have the highest priority.

This way you can have documentation from several different RAML spec files in one
Foliant project (even in one md-file if you like it so).

RAMLDoc | .December 12, 2021 262

https://mozilla.github.io/nunjucks/

Customizing output
The output markdown is generated by raml2html converter, which uses Nunjucks tem-
plating engine (with syntax similar to Jinja2. If you want to create your own template
or modify the default one, specify the template_dir parameter.

The main template file in template dir must be named root.nunjucks.

You may use the default template as your starting point.

Reindexer
This extension allows to integrate Foliant-managed documentation projects with the
in-memory DBMS Reindexer to use it as a fulltext search engine.

The main part of this extension is a preprocessor that prepares data for a search index.
In addition, the preprocessor performs basic manipulations with the database and the
namespace in it.

Also this extension provides a simple working example of a client-side Web applica-
tion that may be used to perform searching. By editing HTML, CSS and JS code you
may customize it according to your needs.

Installation
To install the preprocessor, run the command:

$ pip install foliantcontrib.reindexer

To use an example of a client-side Web application for searching, download these
HTML, CSS, and JS files and open the file index.html in your Web browser.

Config
To enable the preprocessor, add reindexer to preprocessors section in the
project config:

1 preprocessors:

2 - reindexer

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - reindexer:

Reindexer | .December 12, 2021 263

https://github.com/raml2html/raml2html
https://mozilla.github.io/nunjucks/
https://jinja.palletsprojects.com/
https://github.com/Vanderhoof/raml2html-full-markdown-theme/tree/master/templates
https://github.com/Restream/reindexer/
https://github.com/foliant-docs/foliantcontrib.reindexer/tree/master/webapp_example/
https://github.com/foliant-docs/foliantcontrib.reindexer/tree/master/webapp_example/

3 reindexer_url: http://127.0.0.1:9088/

4 insert_max_bytes: 0

5 database: ''

6 namespace: ''

7 namespace_renamed: ''

8 fulltext_config: {}

9 actions:

10 - drop_database

11 - create_database

12 - create_namespace

13 - insert_items

14 use_chapters: true

15 format: plaintext

16 escape_html: true

17 url_transform:

18 - '\/?index\.md$': '/'

19 - '\.md$': '/'

20 - '^([^\/]+)': '/\g<1>'

21 require_env: false

22 targets: []

reindexer_url URL of your Reindexer instance. “Root” server URL should be used
here, do not add any endpoints such as /api/v1/db to it.

insert_max_bytes Reindexer itself or a proxy server may limit the available size
of request body. Use this option, if it’s needed to split a large amount of content
for indexing into several chunks, so each of them will be sent in a separate re-
quest. The value of this option represents maximum size of HTTP POST request
body in bytes. Allowed values are positive integers starting from 1024, and 0

(default) meaning no limits.

database Name of the database that is used to store your search index.

namespace Name of the namespace in the specified database. Namespace in Rein-
dexer means the same as table in relational databases. To store the search index
for one documentation project, single namespace is enough.

namespace_renamed New namespace name to be applied if the rename option
is used; see below.

Reindexer | .December 12, 2021 264

fulltext_config The value of the config field that refers to the description of
the composite fulltext index over the title and content data fields. Used
data structure is described below. Fulltext indexes config options are listed in
the Reindexer’s official documentation.

actions Sequence of actions that the preprocessor should to perform. Available
item values are:

— drop_database—fully remove the database that is specified as the value
of the database option. Please be careful using this action when the single
database is used to store multiple namespaces. Since this action is included
to the default actions list, it’s recommended to use separate databases for
each search index. The default list of actions assumes that in most cases it’s
needed to remove and then fully rebuild the index, and wherein the database
and the namespace may not exist;

— create_database—create the new database with the name specified as
the database option value;

— drop_namespace—delete the namespace that is specified as the
namespace option value. All *_namespace actions are applied to the
existing database with the name from the database option;

— truncate_namespace—remove all items from the namespace that is
specified as the namespace option value, but keep the namespace itself;

— rename_namespace—rename the existing namespace that has the name
specified as the namespace option value, to the new name from the
renamed_namespace option. This action may be useful when a common
search index is created for multiple Foliant projects, and the index may re-
main incomplete for a long time during their building;

— create_namespace—create the new namespace with the name from the
namespace option;

— insert_items—fill the namespace that is specified in the namespace

option, with the content that should be indexed. Each data item added to
the namespace corresponds a single Markdown file of the documentation
project.

use_chapters If set to true (by default), the preprocessor applies only to the files
that are mentioned in the chapters section of the project config. Otherwise,
the preprocessor applies to all Markdown files of the project.

Reindexer | .December 12, 2021 265

https://github.com/Restream/reindexer/blob/master/cpp_src/server/contrib/server.md#fulltextconfig

format Format that the source Markdown content should be converted to before
adding to the index; available values are: plaintext (by default), html,
markdown (for no conversion).

escape_html If set to true (by default), HTML syntax constructions in the content
converted to plaintext will be escaped by replacing & with &, < with
<, > with >, and " with ".

url_transform Sequence of rules to transform local paths of source Markdown
files into URLs of target pages. Each rule should be a dictionary. Its data is
passed to the re.sub() method: key as the pattern argument, and value
as the repl argument. The local path (possibly previously transformed) to the
source Markdown file relative to the temporary working directory is passed as
the string argument. The default value of the url_transform option is
designed to be used to build static websites with MkDocs backend.

require_env If set to true, the FOLIANT_REINDEXER environment variable
must be set to allow the preprocessor to perform any operations with the
database and the namespace managed by Reindexer. This flag may be useful in
CI/CD jobs.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

Usage
The preprocessor reads each source Markdown file and prepares three fields for index-
ing:

— url—target page URL. This field is used as the primary key, so it must be unique;
— title—document title, it’s taken from the first heading of source Markdown con-

tent;
— content—source Markdown content, optionally converted into plain text or

HTML.

When all the files are processed, the preprocessor calls Reindexer API to insert data
items (each item corresponds a single Markdown file) into the specified namespace.

Also the preprocessor may call Reindexer API to manipulate the database or names-
pace, e.g. to delete previously created search index.

You may perform custom search requests to Reindexer API.

Reindexer | .December 12, 2021 266

https://docs.python.org/3/library/re.html#re.sub

The simple client-side Web application example that is provided as a part of this
extension, sends to Reindexer queries like this:

1 {

2 "namespace": "testing",

3 "filters": [

4 {

5 "field": "indexed_content",

6 "cond": "EQ",

7 "value": "@title^3 foliant"

8 }

9],

10 "select_functions": [

11 "content = snippet(,,100,100,'\n\n')"

12],

13 "limit": 50

14 }

To learn how to write efficient queries to Reindexer, you may need to refer to its official
documentation on topics: general use, fulltext search, HTTP REST API.

In the example above, the indexed_content field corresponds to the composite
index over two fields: title and content (this index is generated when the names-
pace is created by the request from the preprocessor). Text of the search query starts
with @title^3,content^1 that means that the title field of the composite in-
dex has triple priority (i.e. weighting factor of 3), and the content field has normal
priority (i.e. weight coefficient equals to 1). Also the example uses the snippet()

select function to highlight the text that matches the query and to cut off excess.

If you use self-hosted instance of Reindexer, you may need to configure a proxy to
append CORS headers to HTTP API responses.

RemoveExcess
RemoveExcess is a preprocessor that removes unnecessary Markdown files that are
not mentioned in the project’s chapters, from the temporary working directory.

Installation

$ pip install foliantcontrib.removeexcess

RemoveExcess | .December 12, 2021 267

https://github.com/foliant-docs/foliantcontrib.reindexer/tree/master/webapp_example/
https://github.com/Restream/reindexer/blob/master/readme.md
https://github.com/Restream/reindexer/blob/master/fulltext.md
https://github.com/Restream/reindexer/blob/master/cpp_src/server/contrib/server.md
https://github.com/Restream/reindexer/blob/master/fulltext.md#text-query-format
https://github.com/Restream/reindexer/blob/master/fulltext.md#using-select-fucntions
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Config
To enable the preprocessor, add removeexcess to preprocessors section in the
project config:

1 preprocessors:

2 - removeexcess

The preprocessor has no options.

Usage
By default, all preprocessors are applied to each Markdown source file copied into the
temporary working directory.

Often it’s needed not to include some files to the project’s chapters. But anyway,
preprocessors will be applied to all source files, that will take extra time and may
cause extra errors. Also, extra files may pass to backends that might be undesirable
for security reasons.

When RemoveExcess preprocessor is enabled, unnecessary files will be deleted. De-
cide at your discretion to which place in the preprocessor queue to put it.

Replace
pypipypi v2.0.0v2.0.0

GitHubGitHub v2.0.0v2.0.0

Replace text for Foliant
Preprocessor for simple search and replace in Markdown sources with support of reg-
ular expressions.

Installation

$ pip install foliantcontrib.replace

Replace | .December 12, 2021 268

https://pypi.org/project/foliantcontrib.replace/
https://github.com/foliant-docs/foliantcontrib.replace

Config
To enable the preprocessor, add replace to preprocessors section in the project
config:

1 preprocessors:

2 - replace

The preprocessor has two options:

1 preprocessors:

2 - replace:

3 dictionary:

4 Mike: Michael

5 Sam: Samuel

6 Tim: Timoel

7 re_dictionary:

8 '!\[\]\((.+?)\)': '![Figure](\1)'

dictionary YAML mapping where key is string to replace, value is the replacement
string.

re_dictionary YAML mapping where key is Python regular expression pattern,
value is the replacement string.

Usage
Fill up the dictionary or/and re_dictionary in preprocessor options and the
keys will be replaced with values.

For example, if you wish that all images without title in your Markdown sources were
titled “Figure”, use the following config:

1 preprocessors:

2 - replace:

3 re_dictionary:

4 '!\[\]\((.+?)\)': '![Figure](\1)'

RepoLink
This preprocessor allows to add into each Markdown source a hyperlink to the relat-
ed file in Git repository. Applying of the preprocessor to subprojects allows to get

RepoLink | .December 12, 2021 269

https://docs.python.org/3/howto/regex.html

links to separate repositories from different pages of a single site (e.g. generated with
MkDocs).

By default, the preprocessor emulates MkDocs behavior. The preprocessor generates
HTML hyperlink with specific attributes and inserts the link after the first heading of
the document. The default behavior may be overridden.

The preprocessor supports the same options repo_url and edit_uri as MkDocs.

Installation
RepoLink preprocessor is a part of MultiProject extension:

Usage
To enable the preprocessor, add repolink to preprocessors section in the
project config:

1 preprocessors:

2 - repolink

The preprocessor has a number of options:

1 preprocessors:

2 - repolink:

3 repo_url: https://github.com/foliant-docs/docs/

4 edit_uri: /blob/master/src/

5 link_type: html

6 link_location: after_first_heading

7 link_text: ""

8 link_title: View the source file

9 link_html_attributes: "class=\"md-icon md-

content__icon\" style=\"margin: -7.5rem 0\""

10 targets:

11 - pre

repo_url URL of the related repository. Default value is an empty string; in this
case the preprocessor does not apply. Trailing slashes do not affect.

edit_uri Revision-dependent part of URL of each file in the repository. Default
value is /blob/master/src/. Leading and trailing slashes do not affect.

RepoLink | .December 12, 2021 270

link_type Link type: HTML (html) or Markdown (markdown). Default value is
html.

link_location Place in the document to put the hyperlink. By default, the hyper-
link is placed after the first heading, and newlines are added before and after it (
after_first_heading). Other values: before_content—the hyperlink
is placed before the content of the document, the newline after it is provided;
after_content—the hyperlink is placed after the content of the document,
the newline before it is added; defined_by_tag—the tags <repo_link

></repo_link> that are met in the content of the document are replaced
with the hyperlink.

link_text Hyperlink text. Default value is Edit this page.
link_title Hyperlink title (the value of title HTML attribute). Default value is

also Edit this page. This option takes effect only when link_type is
set to html.

link_html_attributes Additional HTML attributes for the hyperlink. By using
CSS in combination with class attribute, and/or style attribute, you may
customize the presentation of your hyperlinks. Default value is an empty string.
This option takes effect only when link_type is set to html.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

You may override the value of the edit_uri config option with the
FOLIANT_REPOLINK_EDIT_URI system environment variable. It can be useful in
some non-stable testing or staging environments.

RunCommands
RunCommands is a preprocessor that allows to execute a sequence of arbitrary exter-
nal commands.

Installation

$ pip install foliantcontrib.runcommands

Usage
To enable the preprocessor, add runcommands to preprocessors section in the
project config, and specify the commands to run:

RunCommands | .December 12, 2021 271

1 preprocessors:

2 - runcommands:

3 commands:

4 - ./build.sh

5 - echo "Hello World" > ${WORKING_DIR}/hello.txt

6 targets:

7 - pre

8 - tex

9 - pdf

10 - docx

commands Sequence of system commands to execute one after the other.
targets Allowed targets for the preprocessor. If not specified (by default), the pre-

processor applies to all targets.

Supported environment variables

You may use the following environment variables in your commands:

— ${PROJECT_DIR} — full path to the project directory, e.g. /usr/src/app;
— ${SRC_DIR} — full path to the directory that contains Markdown sources, e.g. /

usr/src/app/src;
— ${WORKING_DIR} — full path to the temporary directory that is used by prepro-

cessors, e.g. /usr/src/app/__folianttmp__;
— ${BACKEND} — currently used backend, e.g. pre, pandoc, or mkdocs;
— ${TARGET} — current target, e.g. site, or pdf.

ShowCommits
pypipypi v1.0.2v1.0.2

GitHubGitHub v1.0.2v1.0.2

ShowCommits | .December 12, 2021 272

https://pypi.org/project/foliantcontrib.showcommits/
https://github.com/foliant-docs/foliantcontrib.showcommits

ShowCommits Preprocessor
ShowCommits is a preprocessor that appends the history of Git commits corresponding
to the current processed file to its content.

Installation

$ pip install foliantcontrib.showcommits

Config
To enable the preprocessor, add showcommits to preprocessors section in the
project config:

1 preprocessors:

2 - showcommits

The preprocessor has a number of options with the following default values:

1 preprocessors:

2 - showcommits:

3 repo_path: !rel_path ./ # Path object that points

to the current Foliant ’projects top-level “(”root)

directory when the preprocessor initializes

4 try_default_path: true

5 remote_name: origin

6 self-hosted: gitlab

7 protocol: https

8 position: after_content

9 date_format: year_first

10 escape_html: true

11 template: |

12 ## File History

13

14 {{startcommits}}

15 Commit: [{{hash}}]({{url}}), author: [{{author

}}]({{email}}), date: {{date}}

16

17 {{message}}

18

ShowCommits | .December 12, 2021 273

19 ```diff

20 {{diff}}

21 ```

22 {{endcommits}}

23 targets: []

repo_path Path to the locally cloned copy of the Git repository that the current
Foliant project’s files belong to.

try_default_path Flag that tells the preprocessor to try to use the default
repo_path if user-specified repo_path does not exist.

remote_name Identifier of remote repository; in most cases you don’t need to over-
ride the default value.

self-hosted String that defines the rules of commit’s web URL anchor generation
when a self-hosted Git repositories management system with web interface is
used. Supported values are: github for GitHub, gitlab for GitLab, and
bitbucket for BitBucket. If the repo fetch URL hostname is github.com

, gitlab.com, or bitbucket.org, the corresponding rules are applied
automatically.

protocol Web interface URL prefix of a repos management system. Supported val-
ues are https and http.

position String that defines where the history of commits should be placed. Sup-
ported values are: after_content for concatenating the history with the
currently processed Markdown file content, and defined_by_tag for replac-
ing the tags <commits></commits> with the history.

date_format Output date format. If the default value year_first is used,
the date “December 11, 2019” will be represented as 2019-12-11. If the
day_first value is used, this date will be represented as 11.12.2019.

escape_html Flag that tells the preprocessor to replace HTML control characters
with corresponding HTML entities in commit messages and diffs: & with &

;, < with <, > with >, " with ".
template Template to render the history of commits. If the value is a string that

contains one or more newlines (\n) or double opening curly braces ({{), it is
interpreted as a template itself. If the value is a string without newlines and
any double opening curly braces, or a Path object, it is interpreted as a path
to the file that contains a template. Template syntax is described below.

targets Allowed targets for the preprocessor. If not specified (by default), the pre-
processor applies to all targets.

ShowCommits | .December 12, 2021 274

Usage
You may override the default template to customize the commits history formatting
and rendering. Feel free to use Markdown syntax, HTML, CSS, and JavaScript in your
custom templates.

In templates, a number of placeholders is supported.

{{startcommits}} Beginning of the list of commits that is rendered within a loop.
Before this placeholder, you may use some common stuff like an introducing
heading or a stylesheet.

{{endcommits}} End of the list of commits. After this placeholder, you also may
use some common stuff like a paragraph of text or a script.

The following placeholders affect only between the {{startcommits}} and {{

endcommits}}.

{{hash}} First 8 digits of the commit hash, e.g. deadc0de.
{{url}} Web URL of commit with an anchor that points to the certain file,

e.g. https://github.com/foliant-docs/foliant/commit/67138

f7c#diff-478b1f78b2146021bce46fbf833eb636. If you don’t use a re-
pos management system with web interface, you don’t need this placeholder.

{{author}} Author name, e.g. Artemy Lomov.
{{email}} Author email, e.g. artemy@lomov.ru.
{{date}} Formatted date, e.g. 2019-12-11.
{{message}} Commit message, e.g. Bump version to 1.0.1..
{{diff}} Diff between the currently processed Markdown file at a certain commit

and the same file at the previous state.

SuperLinks
pypipypi v1.0.12v1.0.12

GitHubGitHub v1.0.12v1.0.12

SuperLinks | .December 12, 2021 275

https://pypi.org/project/foliantcontrib.superlinks/
https://github.com/foliant-docs/foliantcontrib.superlinks

SuperLinks for Foliant
This preprocessor extends the functionality of Markdown links, allowing you to refer-
ence by the heading title, file name or meta id. It works correctly with most backends,
resolving to proper links, depending on which backend is being used.

It adds the <link> tag.

The Problem
The problem with Markdown links is that you have to specify the correct anchor and
file path right away.

Let’s imagine that you want to create a link to a heading which is defined in another
chapter.

If you are building a single-page PDF with Pandoc, you will only need to specify the
anchor, which Pandoc generates from that title. But if you are building an MkDocs
website, you will need to specify the relative filename to the referenced chapter, and
the anchor, which MkDocs generates from the titles. By the way, Pandoc and MkDocs
generate anchors differently. So there’s no way to make it work for all backends by
using just Markdown link syntax.

Superlinks aim to solve this problem.

Installation
Install the preprocessor:

$ pip install foliantcontrib.superlinks

Config
To enable the preprocessor, add superlink to preprocessors section in the
project config.

1 preprocessors:

2 - superlinks

Important: SuperLinks preprocessor is very sensitive to its position in the preproces-
sors list. If you are using it in along with Includes, Anchors or CustomIDs preprocessor,
the order in which they are mentioned must be following:

1 preprocessors:

SuperLinks | .December 12, 2021 276

https://foliant-docs.github.io/docs/preprocessors/includes/
https://foliant-docs.github.io/docs/preprocessors/anchors/
https://foliant-docs.github.io/docs/preprocessors/customids/

2 - includes # indludes must be defined BEFORE

superlinks in the list

3 - ...

4 - superlinks

5 - ... # following preprocessors must be defined

AFTER superlinks in the list

6 - anchors

7 - customids

The preprocessor has no config options just now. But it has some important tag op-
tions.

Usage
To add a link, use a link tag with a combination of following parameters:

title Heading title, which you want to create a link to.
src Relative path to a chapter which is being referenced.
meta_id ID of the meta section which is being referenced. (if title is used, then

this title MUST be inside this meta section)
anchor Name of the anchor defined by Anchors preprocessor or an ID defined by

CustomIDs preprocessor. If src or meta is not provided — the id will be
searched globally.

id Just a hardcoded id. No magic here.

The body of the link tag is your link caption. If the body is empty, SuperLinks will
try to guess the right caption:

— referenced title for links by title,
— meta section title for links by meta section,
— heading title for links by CustomIDs,
— title from config or first heading title in the file for links to file,
— anchor name for links by anchors.

Examples
Reference a title in the same document

<link title="My title">Link caption</link>

Reference a title in another chapter

SuperLinks | .December 12, 2021 277

https://foliant-docs.github.io/docs/preprocessors/anchors/
https://foliant-docs.github.io/docs/preprocessors/customids/

<link src="subfolder/another_chapter.md" title="Another

title">Link caption</link>

Reference the beginning of another chapter

<link src="subfolder/another_chapter.md">Link caption</link>

Reference a title inside meta section

<link meta_id="SECTION1" title="Title in section1">Link

caption</link>

Reference the beginning of meta section

<link meta_id="SECTION1">Link caption</link>

Reference an anchor and search for it globally

<link anchor="my_anchor">Link caption</link>

Reference an anchor and search for it in specific chapter

<link src="subfolder/another_chapter.md" anchor="my_anchor">

Link caption</link>

Supported Backends:

Backend Support

aglio � YES
pandoc � YES
mdtopdf � YES
mkdocs � YES
slate � YES
confluence � YES

SwaggerDoc
pypipypi v1.2.4v1.2.4

SwaggerDoc | .December 12, 2021 278

https://pypi.org/project/foliantcontrib.swaggerdoc/
https://pypi.org/project/foliantcontrib.swaggerdoc/

GitHubGitHub v1.2.4v1.2.4

Swagger API Docs Generator for Foliant

The static site on the picture was built with Slate backend together with SwaggerDoc
preprocessor

This preprocessor generates Markdown documentation from Swagger spec files. It
uses Jinja2 templating engine or Widdershins for generating Markdown from swagger
spec files.

Installation

$ pip install foliantcontrib.swaggerdoc

This preprocessor requires Widdershins to be installed on your system (unless you are
using Foliant with Full Docker Image):

npm install -g widdershins

SwaggerDoc | .December 12, 2021 279

https://github.com/foliant-docs/foliantcontrib.swaggerdoc
https://foliant-docs.github.io/docs/backends/slate/
https://swagger.io/
http://jinja.pocoo.org/
https://github.com/mermade/widdershins
https://github.com/Mermade/widdershins
https://foliant-docs.github.io/docs/tutorials/full_docker/

Config
To enable the preprocessor, add swaggerdoc to preprocessors section in the
project config:

1 preprocessors:

2 - swaggerdoc

The preprocessor has a number of options:

1 preprocessors:

2 - swaggerdoc:

3 spec_url: http://localhost/swagger.json

4 spec_path: swagger.json

5 additional_json_path: tags.json

6 mode: widdershins

7 template: swagger.j2

8 environment: env.yaml

spec_url URL to Swagger spec file. If it is a list — preprocessor takes the first url
which works.

spec_path Local path to Swagger spec file (relative to project dir).

If both url and path are specified — preprocessor first tries to fetch spec
from url, and then (if that fails) looks for the file on local path.

additional_json_path Only for jinja mode. Local path to swagger spec file
with additional info (relative to project dir). It will be merged into original spec
file, not overriding existing fields.

mode Determines how the Swagger spec file would be converted to markdown.
Should be one of: jinja, widdershins. Default: widdershins

jinja mode is deprecated. It may be removed in future

template Only for jinja mode. Path to jinja-template for rendering the gener-
ated documentation. Path is relative to the project directory. If no template is
specified preprocessor will use default template (and put it into project dir if it
was missing). Default: swagger.j2

SwaggerDoc | .December 12, 2021 280

environment Only for widdershins mode. Parameters for widdershins convert-
er. You can either pass a string containing relative path to YAML or JSON file
with all parameters (like in example above) or specify all parameters in YAML
format under this key. More info on widdershins parameters.

Usage
Add a <swaggerdoc></swaggerdoc> tag at the position in the document where
the generated documentation should be inserted:

1 # Introduction

2

3 This document contains the automatically generated

documentation of our API.

4

5 <swaggerdoc></swaggerdoc>

Each time the preprocessor encounters the tag <swaggerdoc></swaggerdoc>

it inserts the whole generated documentation text instead of it. The path or url to
Swagger spec file are taken from foliant.yml.

You can also specify some parameters (or all of them) in the tag options:

1 # Introduction

2

3 Introduction text for API documentation.

4

5 <swaggerdoc spec_url="http://localhost/swagger.json"

6 mode="jinja"

7 template="swagger.j2">

8 </swaggerdoc>

9

10 <swaggerdoc spec_url="http://localhost/swagger.json"

11 mode="widdershins"

12 environment="env.yml">

13 </swaggerdoc>

Tag parameters have the highest priority.

This way you can have documentation from several different Swagger spec files in
one foliant project (even in one md-file if you like it so).

SwaggerDoc | .December 12, 2021 281

https://github.com/mermade/widdershins

Customizing output

Widdershins

In widdershins mode the output markdown is generated by widdershins Node.js
application. It supports customizing the output with doT.js templates.

1. Clone the original widdershins repository and modify the templates located in one
of the subfolders in the templates folder.

2. Save the modified templates somewhere near your foliant project.
3. Specify the path to modified templates in the user_templates field of the

environment configuration. For example, like this:

1 preprocessors:

2 - swaggerdoc:

3 spec_path: swagger.yml

4 environment:

5 user_templates: !path ./widdershins_templates/

Jinja

jinja mode is deprecated. It may be removed in future

In jinja mode the output markdown is generated by the Jinja2 template. In this
template all fields from Swagger spec file are available under the dictionary named
swagger_data.

To customize the output create a template which suits your needs. Then supply the
path to it in the template parameter.

If you wish to use the default template as a starting point, build the foliant project
with swaggerdoc preprocessor turned on. After the first build the default template
will appear in your foliant project dir under name swagger.j2.

TemplateParser
pypipypi v1.0.6v1.0.6

GitHubGitHub v1.0.6v1.0.6

TemplateParser | .December 12, 2021 282

https://github.com/mermade/widdershins
https://github.com/olado/doT
https://github.com/mermade/widdershins
http://jinja.pocoo.org/
https://pypi.org/project/foliantcontrib.templateparser/
https://github.com/foliant-docs/foliantcontrib.templateparser
https://github.com/foliant-docs/foliantcontrib.templateparser

TemplateParser preprocessor for Foliant
Preprocessor which allows to use templates in Foliant source files. Preprocessor now
supports only Jinja2 templating engine, but more can be added easily.

Installation

$ pip install foliantcontrib.templateparser

Config
All params that are stated in foliant.yml are considered global params. All of them
may be overriden in template tag options, which have higher priority.

1 preprocessors:

2 - templateparser:

3 engine: jinja2

4 engine_params:

5 root: '/usr/src/app'

6 context:

7 param1: 1008

8 param2: 'Kittens'

9 ext_context: context.yml

10 param3: 'Puppies'

engine name of the template engine which will be used to process template. Sup-
ported engines right now: jinja2.

engine_params dictionary with parameters which will be transfered to the tem-
plate engine.

context dictionary with variables which will be redirected to the template.
ext_context path to YAML- or JSON-file with context dictionary. (relative to cur-

rent md-file), or URL to such file on the remote server.

All parameters with other names are also transfered to the template, as if they
appeared inside the context dictionary. (param3 in the above example)

Please note that even if this may seem convenient, it is preferred to in-
clude template variables in the context dictionary, as in future more

TemplateParser | .December 12, 2021 283

http://jinja.pocoo.org/

reserved parameters may be added which may conflict with your stray
variables.

If some variable names overlap among these methods to supply context, preprocessor
uses this priority order:

1. Context dictionary.
2. Stray variables.
3. External context file.

Usage
To use the template in a Markdown file just insert a tag of the template engine name,
for example:

1 This is ordinary markdown text.

2 <jinja2>

3 This is a Jinja2 template:

4 I can count to five!

5 {% for i in range(5) %}{{ i + 1 }}{% endfor %}

6 </jinja2>

After making a document with Foliant this will be transformed to:

1 This is ordinary markdown text.

2

3 This is a Jinja2 template:

4 I can count to five!

5 12345

You can also use a general <template> tag, but in this case you have to specify the
engine you want to use in the engine parameter:

1 This is ordinary markdown text.

2 <template engine="jinja2">

3 This is a Jinja2 template:

4 I can count to five!

5 {% for i in range(5) %}{{ i + 1 }}{% endfor %}

6 </template>

TemplateParser | .December 12, 2021 284

Sending variables to template

To send a variable to template, add them into the context option. This option
accepts yaml dictionary format.

1 <jinja2 context="{'name': Andy, 'age': 8}">

2 Hi, my name is {{name}}!

3 I am {{ age }} years old.

4 {% for prev in range(age - 1, 0, -1) %}

5 The year before I was {{prev}} years old.

6 {% endfor %}

7 </jinja2>

Result:

1 Hi, my name is Andy!

2 I am 8 years old.

3

4 The year before I was 7 years old.

5

6 The year before I was 6 years old.

7

8 The year before I was 5 years old.

9

10 The year before I was 4 years old.

11

12 The year before I was 3 years old.

13

14 The year before I was 2 years old.

15

16 The year before I was 1 years old.

Also, you can supply a yaml-file with variables in an ext_context parameter:

1 <jinja2 ext_context="swagger.yaml">

2 Swagger file version: {{ swagger }}

3 Base path: {{ base_path }}

4 ...

5 </jinja2>

TemplateParser | .December 12, 2021 285

Built-in variables

There are some variables that are available in your template by default:

— _foliant_context — dictionary with all user-defined variables, from tag pa-
rameters, context or ext_context variables,

— _foliant_vars — dictionary with all variables mentioned below (in case of
name collisions),

— meta — dictionary with current chapter’s metadata, details in the next chapter,
— meta_object — project’s meta object, details in the next chapter,
— config — Foliant project config,
— target — current target,
— backend — current backend.

Integration with metadata

Templates support latest Foliant metadata functionality. You can find the meta dictio-
nary for current section under meta variable inside template:

1 <meta status="ready" title="Custom Title" author="John"></

meta>

2

3 <jinja2>

4 Document status: {{ meta.status }}

5

6 The document "{{ meta.title }}" is brought to you by {{ meta

.author }}

7 </jinja2>

Result:

1 Document status: ready

2

3 The document "Custom Title" is brought to you by John

You can also find the whole project’s Meta object under meta_object variable
inside template:

1 <meta status="ready" title="Custom Title" author="John"></

meta>

2

TemplateParser | .December 12, 2021 286

https://foliant-docs.github.io/docs/cli/meta/

3 <jinja2>

4 List of chapters in this project:

5 {% for chapter in meta_object.chapters %}

6 * {{ chapter.name }}

7 {%- endfor %}

8 </jinja2>

Result:

1 List of chapters in this project:

2

3 * index

4 * sub

5 * auth

Extends and includes

Extends and includes work in templates. The path of the extending\included file is
relative to the Markdown file where the template lives.

In Jinja2 engine you can override the path of the included\extended files with root

engine_param. Note that this param is relative to project root.

Pro tips

Pro tip #1

All context variables are also available in the _foliant_context dictionary. It
may be handy if you don’t know at design-time which key names are supplied in the
external context file:

1 <jinja2 ext_context="customers.yml">

2 {% for name, data in _foliant_context.items() %}

3

4 # Customer {{ name }}

5

6 Purchase: {{ data['purchase'] }}

7 Order id: {{ data['order_id'] }}

8

9 {% endfor %}

10 </jinja2>

TemplateParser | .December 12, 2021 287

Pro tip #2

If your context file is inside private git repository, you can utilize the power of Includes
preprocessor to retrieve it.

1. Create a file in your src dir, for example, context.md (md extension is obliga-
tory, includes only process markdown files).

2. Add an includes tag:

<include repo_url=“https://my_login:my_password@my.git.org/my_repo.git”
path=“path/to/file.yml”>

3. And supply path to this file in your ext_context param:

<jinja2 ext_context="context.md">

Pro tip #3

If data inside your external context file is not a dictionary, it will be available inside
template under context variable (or _foliant_context['context']).

Testrail
TestRail preprocessor collects test cases from TestRail project and adds to your testing
procedure document.

Important notice! We have some problems with displaying an ex-
clamation mark in the image links, so they are replaced with (

leading_exclamation_mark_here) phrase in the text.

Installation

$ pip install foliantcontrib.testrail

Config
To enable the preprocessor, add testrail to preprocessors section in the
project config. The preprocessor has a number of options (best values are set by
default where possible):

1 preprocessors:

2 - testrail:

3 testrail_url: http://testrails.url

\\ Required

Testrail | .December 12, 2021 288

https://foliant-docs.github.io/docs/preprocessors/includes/

4 testrail_login: username

\\ Required

5 testrail_pass: !env TESTRAIL_PASS

\\ Required

6 project_id: 35

\\ Required

7 suite_ids:

\\ Optional

8 section_ids:

\\ Optional

9 exclude_suite_ids:

\\ Optional

10 exclude_section_ids:

\\ Optional

11 exclude_case_ids:

\\ Optional

12 filename: test_cases.md

\\ Optional

13 rewrite_src_files: false

\\ Optional

14 template_folder: case_templates

\\ Optional

15 img_folder: testrail_imgs

\\ Optional

16 move_imgs_from_text: false

\\ Optional

17 section_header: Testing program

\\ Recommended

18 std_table_header: Table with testing results

\\ Recommended

19 std_table_column_headers: №; Priority; Platform; ID;

Test case name; Result; Comment \\ Recommended

20 add_std_table: true

\\ Optional

21 add_suite_headers: true

\\ Optional

Testrail | .December 12, 2021 289

22 add_section_headers: true

\\ Optional

23 add_case_id_to_case_header: false

\\ Optional

24 add_case_id_to_std_table: false

\\ Optional

25 multi_param_name:

\\ Optional

26 multi_param_select:

\\ Optional

27 multi_param_select_type: any

\\ Optional

28 add_cases_without_multi_param: true

\\ Optional

29 add_multi_param_to_case_header: false

\\ Optional

30 add_multi_param_to_std_table: false

\\ Optional

31 checkbox_param_name:

\\ Optional

32 checkbox_param_select_type: checked

\\ Optional

33 choose_priorities:

\\ Optional

34 add_priority_to_case_header: false

\\ Optional

35 add_priority_to_std_table: false

\\ Optional

36 resolve_urls: true

\\ Optional

37 screenshots_url: https://gitlab_repository.url

\\ Optional

38 img_ext: .png

\\ Optional

39 print_case_structure: true

\\ For debugging

Testrail | .December 12, 2021 290

testrail_url URL of TestRail deployed.
testrail_login Your TestRail username.
testrail_pass Your TestRail password.

It is not secure to store plain text passwords in your config files. We rec-
ommend to use environment variables to supply passwords.

project_id TestRail project ID. You can find it in the project URL, for example
http://testrails.url/index.php?/projects/overview/17 <-.

suite_ids If you have several suites in your project, you can download test cas-
es from certain suites. You can find suite ID in the URL again, for example
http://testrails.url/index.php?/suites/view/63… <-.

section_ids Also you can download any sections you want regardless of it’s
level. Just keep in mind that this setting overrides previous suite_ids
(but if you set suite_ids and then section_ids from another suite, noth-
ing will be downloaded). And suddenly you can find section ID in
it’s URL, for example http://testrails.url/index.php?/suites/view/124&group_-
by=cases:section_id&group_order=asc&group_id=3926 <-.

exclude_suite_ids You can exclude any suites (even stated in suite_ids) from
the document.

exclude_section_ids The same with the sections.
exclude_case_ids And the same with the cases.
filename Path to the test cases file. It should be added to project chapters in

foliant.yml. Default: test_cases.md. For example:

1 title: &title Test procedure

2

3 chapters:

4 - intro.md

5 - conditions.md

6 - awesome_test_cases.md <- This one for test cases

7 - appendum.md

8

9 preprocessors:

10 - testrail:

11 testrail_url: http://testrails.url

12 testrail_login: username

Testrail | .December 12, 2021 291

https://foliant-docs.github.io/docs/config/#env

13 testrail_pass: password

14 project_id: 35

15 filename: awesome_test_cases.md

rewrite_src_files You can update (true) test cases file after each use of prepro-
cessor. Be careful, previous data will be deleted.

template_folder Preprocessor uses Jinja2 templates to compose the file with test
cases. Here you can find documentation: http://jinja.pocoo.org/docs/2.10/ . You
can store templates in folder inside the foliant project, but if it’s not default
case_templates you have to write it here.

If this parameter not set and there is no default case_templates folder in the project,
it will be created automatically with two jinja files for TestRail templates by default
— Test Case (Text) with template_id=1 and Test Case (Steps) with template_id=2.

You can create TestRail templates by yourself in Administration panel, Customizations
section, Templates part. Then you have to create jinja templates whith the names
{template_id}.j2 for them. For example, file 2.j2 for Test Case (Steps) TestRail template:

1 {% if case['custom_steps_separated'][0]['content'] %}

2 {% if case['custom_preconds'] %}

3 **Preconditions:**

4

5 {{ case['custom_preconds'] }}

6 {% endif %}

7

8 **Scenario:**

9

10 {% for case_step in case['custom_steps_separated'] %}

11

12 *Step {{ loop.index }}.* {{ case_step['content'] }}

13

14 *Expected result:*

15

16 {{ case_step['expected'] }}

17

18 {% endfor %}

19 {% endif %}

Testrail | .December 12, 2021 292

You can use all parameters of two variables in the template — case and params. Case
parameters depends on TestRail template. All custom parameters have prefix ‘custom_’
before system name set in TestRail.

Here is an example of case variable (parameters depends on case template):

1 case = {

2 'created_by': 3,

3 'created_on': 1524909903,

4 'custom_expected': None,

5 'custom_goals': None,

6 'custom_mission': None,

7 'custom_preconds': '- The user is not registered in the

system.\r\n'

8 '- Registration form opened.',

9 'custom_steps': '',

10 'custom_steps_separated': [{

11 'content': 'Enter mobile phone number.',

12 'expected': '- Entered phone number '

13 'is visible in the form field.'

14 },

15 {'content': 'Press OK button.',

16 'expected': '- SMS with registration code '

17 'received.\n'}],

18 'custom_test_androidtv': None,

19 'custom_test_appletv': None,

20 'custom_test_smarttv': 'None,

21 'custom_tp': True,

22 'estimate': None,

23 'estimate_forecast': None,

24 'id': 15940,

25 'milestone_id': None,

26 'priority_id': 4,

27 'refs': None,

28 'section_id': 3441,

29 'suite_id': 101,

30 'template_id': 7,

31 'title': 'Registration by mobile phone number.',

Testrail | .December 12, 2021 293

32 'type_id': 7,

33 'updated_by': 10,

34 'updated_on': 1528978979

35 }

And here is an example of params variable (parameters are always the same):

1 params = {

2 'multi_param_name': 'platform',

3 'multi_param_sys_name': 'custom_platform',

4 'multi_param_select': ['android', 'ios'],

5 'multi_param_select_type': any,

6 'add_cases_without_multi_param': False,

7 'checkbox_param_name': 'publish',

8 'checkbox_param_sys_name': 'custom_publish',

9 'checkbox_param_select_type': 'checked',

10 'choose_priorities': ['critical', 'high', 'medium'],

11 'add_multi_param_to_case_header': True,

12 'add_multi_param_to_std_table': True,

13 'add_priority_to_case_header': True,

14 'add_priority_to_std_table': True,

15 'add_case_id_to_case_header': False,

16 'add_case_id_to_std_table': False,

17 'links_to_images': [

18 {'id': '123', 'link': '(

leading_exclamation_mark_here)[Image caption](testrail_imgs

/123.png)'},

19 ...

20]

21 }

img_folder Folder to store downloaded images if rewrite_src_files=True.
move_imgs_from_text It’s impossible to compile test cases with images to the

table. So you can use this parameter to convert image links in test cases to
ordinary markdown-links and get the list with all image links in params[‘links_-
to_images’] parameter to use in jinja template. In this case you’ll have to use
multilinetables and anchors preprocessors.

Testrail | .December 12, 2021 294

https://foliant-docs.github.io/docs/preprocessors/multilinetables/
https://foliant-docs.github.io/docs/preprocessors/anchors/

For example, you have 2-step test case:

1 Step 1:

2

3 Press the button:

4

5 (leading_exclamation_mark_here)[Button](index.php?/

attachments/get/740)

6

7 Result 1:

8

9 Dialog box will opened:

10

11 (leading_exclamation_mark_here)[Dialog box](index.php?/

attachments/get/741)

12

13 Step 2:

14

15 Select option:

16

17 (leading_exclamation_mark_here)[List of options](index.php?/

attachments/get/742)

18

19 Result 2:

20

21 Option selected:

22

23 (leading_exclamation_mark_here)[Result](index.php?/

attachments/get/743)

Minimal multilinetables and anchors preprocessor settings in foliant.yml should
be like this (more about multilinetables parameters see in preprocessor documenta-
tion):

1 - anchors

2 - multilinetables:

3 enable_hyphenation: true

4 hyph_combination: brkln

Testrail | .December 12, 2021 295

https://foliant-docs.github.io/docs/preprocessors/multilinetables/
https://foliant-docs.github.io/docs/preprocessors/multilinetables/

5 convert_to_grid: true

After testrail preprocessor process this test case, you will have params['

links_to_images'] parameter with list of image links in order of appearance to
use in jinja template:

1 [

2 {'id': '740', 'link': '(leading_exclamation_mark_here)[

Button](testrail_imgs/740.png)'},

3 {'id': '741', 'link': '(leading_exclamation_mark_here)[

Dialog box](testrail_imgs/741.png)'},

4 {'id': '742', 'link': '(leading_exclamation_mark_here)[

List of options](testrail_imgs/742.png)'},

5 {'id': '743', 'link': '(leading_exclamation_mark_here)[

Result](testrail_imgs/743.png)'}

6]

Using this jinja template:

1 **Testing procedure:**

2

3 | # | Test step | Expected result | Passed |

Comment |

4 |---|-------------------|---------------------|----------|------------------------|

5 {% for case_step in case['custom_steps_separated'] -%}

6 | {{ loop.index }} | {{ case_step['content']|replace("\n", "

brkln") }} | {{ case_step['expected']|replace("\n", "brkln")

}} | | |

7 {% endfor %}

8

9 {% if params['links_to_images'] %}

10 *Images:*

11

12 {% for image in params['links_to_images'] %}

13 <anchor>{{ image['id'] }}</anchor>

14

15 {{ image['link'] }}

16

Testrail | .December 12, 2021 296

17 {% endfor %}

18 {% endif %}

The markdown result will be:

1 **Testing procedure:**

2

3 +---+---+--+--------+---------+

4 | # | Test step | Expected

result | Passed | Comment |

5 +===+===+==+========+=========+

6 | 1 | Press the button | Dialog box

will opened: | | |

7 | | |

| | |

8 | | [Button](#740) | [Dialog box

](#741) | | |

9 | | |

| | |

10 +---+---+--+--------+---------+

11 | 2 | Select option: | Option

selected: | | |

12 | | |

| | |

13 | | [List of options](#742) | [Result

](#743) | | |

14 +---+---+--+--------+---------+

15

16 *Images:*

17

18 <anchor>740</anchor>

19

20 (leading_exclamation_mark_here)[Button](testrail_imgs/740.

png)

Testrail | .December 12, 2021 297

21

22 <anchor>741</anchor>

23

24 (leading_exclamation_mark_here)[Dialog box](testrail_imgs

/741.png)

25

26 <anchor>742</anchor>

27

28 (leading_exclamation_mark_here)[List of options](

testrail_imgs/742.png)

29

30 <anchor>743</anchor>

31

32 (leading_exclamation_mark_here)[Result](testrail_imgs/743.

png)

So you can use links in the table to go to the correspondent image.

Important! Anchors must differ, so if one image (with the same image id)
will appear in several test cases, this image will be downloaded separately
for each appearance and renamed with postfix ‘-1’, ‘-2’, etc.

Next three fields are necessary due localization issues. While markdown document
with test cases is composed on the go, you have to set up some document headers.
Definitely not the best solution in my life.

section_header First level header of section with test cases. By default it’s Testing
program in Russian.

std_table_header First level header of section with test results table. By default
it’s Testing table in Russian.

std_table_column_headers Semicolon separated headers of testing table
columns. By default it’s №; Priority; Platform; ID; Test case name; Result;
Comment in Russian.

add_std_table You can exclude (false) a testing table from the document.
add_suite_headers With false you can exclude all suite headers from the final

document.
add_section_headers With false you can exclude all section headers from the

final document.

Testrail | .December 12, 2021 298

add_case_id_to_case_header Every test case in TestRail has unique
ID, which, as usual, you can find in the header or test case URL:
http://testrails.url/index.php?/cases/view/15920… <-. So you can add (true)
this ID to the test case headers and testing table. Or not (false).

add_case_id_to_std_table Also you can add (true) the column with the test
case IDs to the testing table.

In TestRail you can add custom parameters to your test case template. With next
settings you can use one multi-select or dropdown (good for platforms, for example)
and one checkbox (publishing) plus default priority parameter for cases sampling.

multi_param_name Parameter name of multi-select or dropdown type you set in
System Name field of Add Custom Field form in TestRail. For example, platforms
with values Android, iOS, PC, Mac and web. If multi_param_select not set, all
test cases will be downloaded (useful when you need just to add parameter
value to the test headers or testing table).

multi_param_select Here you can set the platforms for which you want to get
test cases (case insensitive). For example, you have similar UX for mobile plat-
forms and want to combine them:

1 preprocessors:

2 - testrail:

3 ...

4 multi_param_name: platforms

5 multi_param_select: android, ios

6 ...

multi_param_select_type With this parameter you can make test cases sam-
pling in different ways. It has several options:

— any (by default) — at least one of multi_param_select values should be set for the
case,

— all — all of multi_param_select values should be set and any other can be set for
the case,

— only — only multi_param_select values in any combination should be set for the
case,

— match — all and only multi_param_select values should be set for the case.

With multi_param_select: android, ios we will get the following cases:

Testrail | .December 12, 2021 299

Test cases Android iOS PC Mac web any all only match

Test case 1 + + + + + +
Test case 2 + + + + + +
Test case 3 + +
Test case 4 + + + +
Test case 5 + + + + +
Test case 6 + + + + +
Test case 7 + + +
Test case 8 + + +
Test case 9 + + +

add_cases_without_multi_param Also you can include (by default) or exclude
(false) cases without any value of multi-select or dropdown parameter.

add_multi_param_to_case_header You can add (true) values of multi-select
or dropdown parameter to the case headers or not (by default).

add_multi_param_to_std_table You can add (true) column with values of
multi-select or dropdown parameter to the testing table or not (by default).

checkbox_param_name Parameter name of checkbox type you set in System Name
field of Add Custom Field form in TestRail. For example, publish. Without pa-
rameter name set all of cases will be downloaded.

checkbox_param_select_type With this parameter you can make test cases
sampling in different ways. It has several options:

— checked (by default) — only cases whith checked field will be downloaded,
— unchecked — only cases whith unchecked field will be downloaded.

choose_priorities Here you can set test case priorities to download (case in-
sensitive).

1 preprocessors:

2 - testrail:

3 ...

4 choose_priorities: critical, high, medium

5 ...

add_priority_to_case_header You can add (true) priority to the case headers
or not (by default).

Testrail | .December 12, 2021 300

add_priority_to_std_table You can add (true) column with case priority to
the testing table or not (by default).

Using described setting you can flexibly adjust test cases sampling. For example, you
can download only published critical test cases for both and only Mac and PC.

Now strange things, mostly made specially for my project, but may be useful for oth-
ers.

Screenshots. There is a possibility to store screenshots in TestRail test cases, but you
can store them in the GitLab repository (link to which should be stated in one of the
following parameters). GitLab project should have following structure:

1 images/├──
2 smarttv/

3 | ├── screenshot1_smarttv.png

4 | ├── screenshot2_smarttv.png

5 | └── ...├──
6 androidtv/

7 | ├── screenshot1_androidtv.png

8 | ├── screenshot2_androidtv.png

9 | └── ...├──
10 appletv/

11 | ├── screenshot1_appletv.png

12 | ├── screenshot2_appletv.png

13 | └── ...├──
14 web/

15 | ├── screenshot1_web.png

16 | ├── screenshot2_web.png

17 | └── ...├──
18 screenshot1.png├──
19 screenshot2.png└──
20 ...

images folder used for projects without platforms.

Filename ending is a first value of multi_param_select parameter (platform). Now to
add screenshot to your document just add following string to the test case (unfortu-
nately, in TestRail interface it will looks like broken image link):

Testrail | .December 12, 2021 301

(leading exclamation mark here!)[Image title](

main_filename_part)

Preprocessor will convert to the following format:

https://gitlab.url/gitlab_group_name/gitlab_project_name/raw

/master/images/platform_name/

main_filename_part_platform_name.png

For example, in the project with multi_param_select: smarttv the string

(leading exclamation mark here!)[Application main screen](

main_screen)

will be converted to:

(leading exclamation mark here!)[Application main screen](

https://gitlab.url/documentation/application-screenshots/raw

/master/images/smarttv/main_screen_smarttv.png)

That’s it.

resolve_urls Turn on (true) or off (false, by default) image urls resolving.
screenshots_url GitLab repository URL, in our example:

https://gitlab.url/documentation/application-screenshots/ .
img_ext Screenshots extension. Yes, it must be only one and the same for all screen-

shots. Also this parameter used to save downloaded images from TestRail.

And the last one emergency tool. If you have no jinja template for any type of Tes-
tRail case, you’ll see this message like this: There is no jinja template for test case
template_id 5 (case_id 1325) in folder case_templates. So you have to write jinja tem-
plate by yourself. To do this it’s necessary to know case structure. This parameter
shows it to you.

print_case_structure Turn on (true) or off (false, by default) printing out of
case structure with all data in it if any problem occurs.

Usage
Just add the preprocessor to the project config, set it up and enjoy the automatically
collected test cases to your document.

Testrail | .December 12, 2021 302

Tips

In some cases you may encounter a problem with test cases text format, so
composed markdown file will be converted to the document with bad for-
matting. In this cases replace preprocessor could be useful: https://foliant-
docs.github.io/docs/preprocessors/replace/ .

Testrail | .December 12, 2021 303

CLI Extensions
Bump
This CLI extension adds bump command that lets you bump Foliant project semantic
version without editing the config manually.

Installation

$ pip install foliantcontrib.bump

Usage
Bump version from “1.0.0” to “1.0.1”:

1 $ foliant bump

2 Version bumped from 1.0.0 to 1.0.1.

Bump major version:

1 $ foliant bump -v major

2 Version bumped from 1.0.1 to 2.0.0.

To see all available options, run foliant bump --help:

1 $ foliant bump --help

2 usage: foliant bump [-h] [-v VERSION_PART] [-p PATH] [-c

CONFIG]

3

4 Bump Foliant project version.

5

6 optional arguments:

7 -h, --help show this help message and exit

8 -v VERSION_PART, --version-part VERSION_PART

9 Part of the version to bump: major,

minor, patch, prerelease, or build (default: patch).

10 -p PATH, --path PATH Path to the directory with the

config file (default: ".").

11 -c CONFIG, --config CONFIG

CLI Extensions | .December 12, 2021 304

https://semver.org/
https://semver.org/

12 Name of the config file (default: "

foliant.yml").

Gupload
Gupload is the Foliant CLI extension, it’s used to upload created documents to Google
Drive.

Gupload adds gupload command to Foliant.

Installation

$ pip install foliantcontrib.gupload

Config
To config the CLI extension, add gupload section in the project config. As gupload

needs document to upload, appropriate backend settings also have to be here.

CLI extension has a number of options (all fields are required but can have no values):

1 gupload:

2 gdrive_folder_name: Foliant upload

3 gdrive_folder_id:

4 gdoc_title:

5 gdoc_id:

6 convert_file:

7 com_line_auth: false

gdrive_folder_name Folder with this name will be created on Google Drive to
upload file.

gdrive_folder_id This field is necessary to upload files to previously created
folder.

gdoc_title Uploaded file will have this title. If empty, real filename will be used.
gdoc_id This field is necessary to rewrite previously uploaded file and keep the link

to it.
convert_file Convert uploaded files to google docs format or not.
com_line_auth In some cases it’s impossible to authenticate automatically (for

example, with Docker), so you can set True and use command line authentication
procedure.

Gupload | .December 12, 2021 305

Usage
At first you have to get Google Drive authentication file.

1. Go to APIs Console and make your own project.
2. Go to library, search for ‘Google Drive API’, select the entry, and click ‘Enable’.
3. Select ‘Credentials’ from the left menu, click ‘Create Credentials’, select ‘OAuth

client ID’.
4. Now, the product name and consent screen need to be set -> click ‘Configure con-

sent screen’ and follow the instructions. Once finished:
— Select ‘Application type’ to be Other types.
— Enter an appropriate name.
— Input http://localhost:8080 for ‘Authorized JavaScript origins’.
— Input http://localhost:8080/ for ‘Authorized redirect URIs’.
— Click ‘Save’.

5. Click ‘Download JSON’ on the right side of Client ID to download client_secret_.json.
The downloaded file has all authentication information of your application.

6. Rename the file to “client_secrets.json” and place it in your working directory near
foliant.yml.

Now add the CLI extension to the project config with all settings strings. At this
moment you have no data to set Google Drive folder ID and google doc ID so keep it
empty.

Run Foliant with gupload command:

1 $ foliant gupload docx✔
2 Parsing config✔
3 Applying preprocessor flatten✔
4 Making docx with Pandoc─────────────────────
5

6 Result: filename.docx─────────────────────✔
7

8 Parsing config

9 Your browser has been opened to visit:

10

11 https://accounts.google.com/o/oauth2/auth?...

12

13 Authentication successful.✔

Gupload | .December 12, 2021 306

https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/apis/library

14 Uploading 'filename.docx' to Google Drive

─────────────────────
15

16 Result:

17 Doc link: https://docs.google.com/document/d/1

GPvNSMJ4ZutZJwhUYM1xxCKWMU5Sg/edit?usp=drivesdk

18 Google drive folder ID: 1AaiWMNIYlq9639P30R3T9

19 Google document ID: 1GPvNSMJ4Z19YM1xCKWMU5Sg

Authentication form will be opened. Choose account to log in.

With command line authentication procedure differs little bit:

1 $ docker-compose run --rm foliant gupload docx✔
2 Parsing config✔
3 Applying preprocessor flatten✔
4 Making docx with Pandoc─────────────────────
5

6 Result: filename.docx─────────────────────✔
7

8 Parsing config

9 Go to the following link in your browser:

10

11 https://accounts.google.com/o/oauth2/auth?...

12

13 Enter verification code: 4/XgBllTXpxv8kKjsiTxLc

14 Authentication successful.✔
15 Uploading 'filename.docx' to Google Drive

─────────────────────
16

17 Result:

18 Doc link: https://docs.google.com/document/d/1

GPvNSMJ4ZutZJwhUYM1xxCKWMU5Sg/edit?usp=drivesdk

19 Google drive folder ID: 1AaiWMNIYlq9639P30R3T9

20 Google document ID: 1GPvNSMJ4Z19YM1xCKWMU5Sg

Copy link from terminal to your browser, choose account to log in and copy generated
code back to the terminal.

Gupload | .December 12, 2021 307

After that the document will be uploaded to Google Drive and opened in new browser
tab.

Now you can use Google Drive folder ID to upload files to the same folder and google
doc ID to rewrite document (also you can IDs in folder and file links).

Notes

If you set up google doc ID without Google Drive folder ID file will be moved to the
new folder with the same link.

Meta Generate
meta generate command collects metadata from the Foliant project and saves it

into a YAML-file.

Usage
To generate meta file run the meta generate command:

$ foliant meta generate

Metadata for the document will appear in the meta.yml file.

Config
Meta generate command has just one option right now. It is specified under meta

section in config:

1 meta:

2 filename: meta.yml

filename name of the YAML-file with generated project metadata.

Init
This CLI extension add init command that lets you create Foliant projects from
templates.

Installation

$ pip install foliantcontrib.init

Meta Generate | .December 12, 2021 308

Usage
Create project from the default “base” template:

1 $ foliant init

2 Enter the project name: Awesome Docs✔
3 Generating Foliant project─────────────────────
4

5 Project "Awesome Docs" created in awesome-docs

Create project from a custom template:

1 $ foliant init --template /path/to/custom/template

2 Enter the project name: Awesome Customized Docs✔
3 Generating Foliant project─────────────────────
4

5 Project "Awesome Customized Docs" created in awesome-

customized-docs

You can provide the project name without user prompt:

1 $ foliant init --name Awesome Docs✔
2 Generating Foliant project─────────────────────
3

4 Project "Awesome Docs" created in awesome-docs

Another useful option is --quiet, which hides all output except for the path to the
generated project:

1 $ foliant init --name Awesome Docs --quiet

2 awesome-docs

To see all available options, run foliant init --help:

1 $ foliant init --help

2 usage: foliant init [-h] [-n NAME] [-t NAME or PATH] [-q]

3

4 Generate new Foliant project.

5

6 optional arguments:

7 -h, --help show this help message and exit

Init | .December 12, 2021 309

8 -n NAME, --name NAME Name of the Foliant project

9 -t NAME or PATH, --template NAME or PATH

10 Name of a built-in project template

or path to custom one

11 -q, --quiet Hide all output accept for the

result. Useful for piping.

Project Templates
A project template is a regular Foliant project but containing placeholders in files.
When the project is generated, the placeholders are replaced with the values you
provide. Currently, there are two placeholders: $title and $slug.

There is a built-in template called base. It’s used by default if no template is speci-
fied.

Init Templates
Preprocessor
Template for a Foliant preprocessor. Instead of looking for an existing preprocessor,
cloning it, and modifying its source, install this package and generate a preprocessor
directory. As simple as:

$ foliant init -t preprocessor

Installation

$ pip install --no-compile foliantcontrib.templates.

preprocessor

Usage

1 $ foliant init -t preprocessor

2 Enter the project name: Awesome Preprocessor✔
3 Generating project─────────────────────
4

5 Project "Awesome Preprocessor" created in awesome-

preprocessor

Init Templates | .December 12, 2021 310

Or:

1 $ foliant init -t preprocessor -n "Awesome Preprocessor"✔
2 Generating project─────────────────────
3

4 Project "Awesome Preprocessor" created in awesome-

preprocessor

Result:

1 $ tree awesome-preprocessor

2 .├──
3 changelog.md├──
4 foliant│
5 └── preprocessors│
6 └── awesome-preprocessor.py├──
7 LICENSE├──
8 README.md└──
9 setup.py

10

11 2 directories, 5 files

Src
Installation
To enable the src command, install MultiProject extension:

Usage
To make a backup of the source directory, use the command:

$ foliant src backup

To restore the source directory from the backup, use the command:

$ foliant src restore

You may use the --config option to specify custom config file name of your Foliant
project. By default, the name foliant.yml is used:

Src | .December 12, 2021 311

$ foliant src backup --config alternative_config.yml

Also you may specify the root directory of your Foliant project by using the --path

option. If not specified, current directory will be used.

Subset
This CLI extension adds the command subset that generates a config file for a subset
(i.e. a detached part) of the Foliant project. The command uses:

— the common (i.e. default, single) config file for the whole Foliant project;
— the part of config that is individual for each subset. The Foliant project may include

multiple subsets that are defined by their own partial config files.

The command subset takes a path to the subset directory as a mandatory command
line parameter.

The command subset:

— reads the partial config of the subset;
— optionally rewrites the paths of Markdown files that specified there in the

chapters section;
— merges the result with the default config of the whole Foliant project config;
— finally, writes a new config file that allows to build a certain subset of the Foliant

project with the make command.

Installation
To install the extension, use the command:

$ pip install foliantcontrib.subset

Usage
To get the list of all necessary parameters and available options, run foliant

subset --help:

1 $ foliant subset --help

2 usage: foliant subset [-h] [-p PROJECT_DIR_PATH] [-c CONFIG]

[-n] [-d] SUBPATH

3

4 Generate the config file to build the project subset from

SUBPATH.

Subset | .December 12, 2021 312

5

6 positional arguments:

7 SUBPATH Path to the subset of the Foliant

project

8

9 optional arguments:

10 -h, --help show this help message and exit

11 -p PROJECT_DIR, --path PROJECT_DIR

12 Path to the Foliant project

13 -c CONFIG, --config CONFIG

14 Name of config file of the Foliant

project, default 'foliant.yml'

15 -n, --norewrite Do not rewrite the paths of Markdown

files in the subset partial config

16 -d, --debug Log all events during build. If not

set, only warnings and errors are logged

In most cases it’s enough to use the default values of optional parameters. You need
to specify only the SUBPATH—the directory that should be located inside the Foliant
project source directory.

Suppose you use the default settings. Then you have to prepare:

— the common (default) config file foliant.yml in the Foliant project root direc-
tory;

— partial config files for each subset. They also must be named foliant.yml, and
they must be located in the directories of the subsets.

Your Foliant project tree may look so:

1 $ tree

2 .├──
3 foliant.yml└──
4 src

5 ├── group_1

6 │ ├── product_1

7 │ │ └── feature_1

8 │ │ ├── foliant.yml

9 │ │ └── index.md

10 │ └── product_2

Subset | .December 12, 2021 313

11 │ ├── foliant.yml

12 │ └── main.md

13 └── group_2

14 ├── foliant.yml

15 └── intro.md

The command foliant subset group_1/product_1/feautre_1 will
merge the files ./src/group_1/product_1/feautre_1/foliant.yml and
./foliant.yml, and write the result into the file ./foliant.yml.subset.

After that you may use the command like the following to build your Foliant project:

$ foliant make pdf --config foliant.yml.subset

Let’s look at some examples.

The content of the common (default) file ./foliant.yml:

1 title: &title Default Title

2

3 subtitle: &subtitle Default Subtitle

4

5 version: &version 0.0

6

7 backend_config:

8 pandoc:

9 template: !path /somewhere/template.tex

10 reference_docx: !path /somewhere/reference.docx

11 vars:

12 title: *title

13 version: *version

14 subtitle: *subtitle

15 year: 2018

16 params:

17 pdf_engine: xelatex

The content of the partial config file ./src/group_1/product_1/feautre_1/

foliant.yml:

1 title: &title Group 1, Product 1, Feature 1

2

Subset | .December 12, 2021 314

3 subtitle: &subtitle Technical Specification

4

5 version: &version 1.0

6

7 chapters:

8 - index.md

9

10 backend_config:

11 pandoc:

12 vars:

13 year: 2019

The content of newly generated file ./foliant.yml.subset:

1 title: &title Group 1, Product 1, Feature 1

2 subtitle: &subtitle Technical Specification

3 version: &version 1.0

4 backend_config:

5 pandoc:

6 template: !path /somewhere/template.tex

7 reference_docx: !path /somewhere/reference.docx

8 vars:

9 title: *title

10 version: *version

11 subtitle: *subtitle

12 year: 2019

13 params:

14 pdf_engine: xelatex

15 chapters:

16 - b2b/order_1/feature_1/index.md

If the option --no-rewrite is not set, the paths of Markdown files that are specified
in the chapters section of the file ./src/group_1/product_1/feautre_1

/foliant.yml, will be rewritten as if these paths were relative to the directory
./src/group_1/product_1/feautre_1/.

Otherwise, the Subset CLI extension will not rewrite the paths of Markdown files as if
they were relative to ./src/ directory.

Subset | .December 12, 2021 315

Note that the Subset CLI Extension merges the data of the config files recursively, so
any subkeys of default config may be overridden by the settings of partial config.

Subset | .December 12, 2021 316

Config Extensions
AltStructure

pypipypi v0.2.1v0.2.1

GitHubGitHub v0.2.1v0.2.1

AltStructure Extension
AltStructure is a config extension for Foliant to generate alternative chapter structure
based on metadata.

It adds an alt_structure preprocessor and resolves !alt_structure YAML
tags in the project config.

Installation

$ pip install foliantcontrib.alt_structure

Configuration
Config extension

Options for AltStructure are specified in the alt_structure section at the root of
Foliant config file:

1 alt_structure:

2 structure:

3 topic:

4 entity:

5 additional:

6 add_unmatched_to_root: false

7 registry:

8 auth: Аутентификация и авторизация

9 weather: Погода

Config Extensions | .December 12, 2021 317

https://pypi.org/project/foliantcontrib.alt_structure/
https://github.com/foliant-docs/foliantcontrib.alt_structure

10 test_case: Тест кейсы

11 spec: Спецификации

structure (required) A mapping tree, representing alternative structure.
add_unmatched_to_root if true, all chapters that weren’t matched to structure

in metadata will be added to root of the chapter tree. If false — they will be
ignored. Default: false

registry A dictionary which defines aliases for chapter tree categories.

Preprocessor

Preprocessor has just one option:

1 preprocessors:

2 - alt_structure:

3 create_subfolders: true

create_subfolders If true, preprocessor will create a full copy of the working_-
dir and add it to the beginning of all filepaths in the generated structure. If
false — preprocessor doesn’t do anything. Default: true

Usage
Step 1

Add !alt_structure tag to your chapters in the place where you expect new
structure to be generated. It accepts one argument: list of chapters, which will be
scanned.

1 chapters:

2 - basic: # <-- this is _chapter tree category_

3 - auth/auth.md

4 - index.md

5 - auth/test_auth.md

6 - auth/test_auth_aux.md

7 - weather.md

8 - glossary.md

9 - auth/spec_auth.md

10 - test_weather.md

11 - Alternative: !alt_structure

AltStructure | .December 12, 2021 318

12 - auth/auth.md

13 - index.md

14 - auth/test_auth.md

15 - auth/test_auth_aux.md

16 - weather.md

17 - glossary.md

18 - auth/spec_auth.md

19 - test_weather.md

AltStructure extension introduces a lot of new notions, so let’s agree on
some terms to make sure we are on the same page. Chapter tree category
is a mapping with single key which you add to your chapter list to create
hierarchy. basic: and Alternative: are categories in this example.

You can also utilize YAML anchors and aliases, but in this case, because of language
limitation you need to supply alias inside a list. Let’s use it to get the same result as
the above, but in a more compact way:

1 chapters:

2 - basic: &basic

3 - auth/auth.md

4 - index.md

5 - auth/test_auth.md

6 - auth/test_auth_aux.md

7 - weather.md

8 - glossary.md

9 - auth/spec_auth.md

10 - test_weather.md

11 - Alternative: !alt_structure [*basic]

Step 2

Next you need to define the structure in structure parameter of extension config.
It is defined by a mapping tree of node types. For example:

1 alt_structure:

2 structure:

3 topic: # topic is the upmost node type

AltStructure | .December 12, 2021 319

4 entity: # nodes with type "entity" will be

nested in "topic"

5 additional:

6 glossaries:

These names of the node types are arbitrary, you can use any words you like except
root and subfolder.

Step 3

Open your source md-files and edit their main meta sections. Main meta section is
a section, defined before the first heading in the document (check metadata docu-
mentation for more info). Add a mapping with nodes for this chapter under the key
structure.

file auth_spec.md

1 ---

2 structure:

3 topic: auth # <-- node type: node name

4 entity: spec

5 ---

6

7 # Specification for authorization

Here topic and entity are node types, which are part of our structure (step 2).
auth and spec are node names. After applying !alt_structure tag nodes will
be converted into chapter tree categories. Node type defines the level of the category
and node name defines the caption of the category.

We’ve added two nodes to the structure field of chapter metadata: topic:

auth and entity: spec. In the structure that we’ve defined on step 2 the topic

goes first and entity — second. So after applying the tag, this chapter will appear
in config like this:

1 - auth:

2 - spec:

3 - auth_spec.md

If we’d stated only topic key in metadata, then it would look like this:

1 - auth:

AltStructure | .December 12, 2021 320

https://foliant-docs.github.io/docs/meta/
https://foliant-docs.github.io/docs/meta/

2 - auth_spec.md

Step 4

Now let’s fill up registry. We used spec and auth in our metadata for node names,
but these words don’t look pretty in the documents. Registry allows us to set verbose
captions for node names in config:

1 alt_structure:

2 structure:

3 - ['topic', 'entity']

4 - 'additional/glossaries'

5 registry:

6 auth: Authentication and Authorization

7 spec: Specifications

With such registry now our new structure will look like this:

1 - Authentication and Authorization:

2 - Specifications:

3 - auth_spec.md

Special node types

In the step 2 of the user guide above we’ve mentioned that you may choose any node
names in the structure except root and subfolder. These are special note types
and here’s how you can use them.

root

For example, if our structure looks like this:

1 alt_structure:

2 structure:

3 topic:

4 entity:

and our chapter’s metadata looks like this:

1 ---

2 structure:

3 foo: bar

AltStructure | .December 12, 2021 321

4 ---

The node foo: bar is not part of the structure, so applying the !alt_structure

tag it will just be ignored (unless add_unmatched_to_root is set to true in
config). But what if you want to add it to the root of your chapter tree?

To do that — add the root node to your metadata:

1 ---

2 structure:

3 foo: bar

4 root: true # the value of the key `root` is ignored, we

use `true` for clarity

5 ---

subfolder

By defining subfolder node in chapter’s metadata you can manually add another
chapter tree category to any chapter.

For example:

file auth_spec.md

1 ---

2 structure:

3 topic: auth

4 entity: spec

5 subfolder: Main specifications

6 ---

After applying tag the new structure will look like this:

1 - auth:

2 - spec:

3 - Main specifications:

4 - auth_spec.md

Using preprocessor

By default the !alt_structure tag only affects the chapters section of your
foliant.yml. This may lead to situation when the same file is mentioned several times

AltStructure | .December 12, 2021 322

in the chapters section. While most backends are fine with that — they will just
publish the file two times, MkDocs does not handle this situation well.

That’s where you will need to add the preprocessor alt_structure to your prepro-
cessors list. Preprocessor creates a subfolder in the working_dir and copies the entier
working_dir contents into it. Then it inserts the subfolder name into the beginning of
all chapters paths in the alternative structure.

Important: It is recommended to add this preprocessor to the end of the
preprocessors list.

1 preprocessors:

2 ...

3 alt_structure:

4 create_subfolders: true

Note, that the parameter create_subfolders is not necessary, it is true by
default. But we recommend to state it anyway for clarity.

After applying the tag, your new structure will now look like this:

1 - Authentication and Authorization:

2 - Specifications:

3 - alt1/auth_spec.md

The contents of the working_dir were copied into a subdir alt1, and new structure
refers to the files in this subdir.

DownloadFile
pypipypi v1.0.1v1.0.1

GitHubGitHub v1.0.1v1.0.1

DownloadFile | .December 12, 2021 323

https://foliant-docs.github.io/docs/backends/mkdocs/
https://pypi.org/project/foliantcontrib.downloadfile/
https://github.com/foliant-docs/foliantcontrib.downloadfile

DownloadFile Extension
DownloadFile is a configuration extension for Foliant which downloads external files
to use in your project.

It also resolves !download YAML tag in the project config and inside XML-tags
parameters.

Installation

$ pip install foliantcontrib.downloadfile

Usage
To configure DownloadFile add the following section to your foliant.yml file:

1 downloadfile:

2 fail_fast: true

3 ignore_ssl_errors: false

4 queue:

5 - url: https://example.com/image.png # required

6 save_to: images/img1.png

7 login: john

8 password: qwerty123

9 - ...

fail_fast When true, build will be stopped if any file can’t be downloaded. If
false — unavailable files will be just skipped. Doesn’t affect !download tag,
this one will always break the build on errors. Default: true.

ignore_ssl_errors Switch to true to skip SSL certificate check. Default:
false.

queue list of files to download. Each file is represented by a dictionary with the
following fields:

url (requried) URL to the file which should be downloaded.
save_to path where the downloaded file should be saved, relative to the project

root. If not supplied, file will be saved in the project root with the name from
url.

login login for basic authentication.
password password for basic authentication.

DownloadFile | .December 12, 2021 324

Warning: don’t store plain text passwords in foliant.yml. Use environment
variables.

!download YAML tag

Another way to use DownloadFile is by specifying !download YAML tag. This is the
quickest and the simplest way, but it comes with a few disadvantages.

Insert the !download tag, followed by file URL, in any place in foliant.yml or tag
parameters, where file path is expected:

1 preprocessors:

2 - swaggerdoc:

3 spec_path: !download https://example.com/swagger.

json

4 mode: widdershins

1 Generated template:

2

3 <template engine="jinja2" ext_context="!download https://

example.com/mycontext.yml">

4 ...

5 </template>

The downloaded file will be saved in the .downloadfilecache directory under a
hashed name, and the !download tag will be replaced by absolute path to this file.

The cons of this method are that you can’t change the saved file path nor other pa-
rameters. Also if you reference the same file twice with !download tag, it will be
downloaded two times.

MultiProject
This extension resolves the !from YAML tag in the project config and replaces the
value of the tag with chaptres section of related subproject.

Nested subprojects are processed recursively.

Installation

$ pip install foliantcontrib.multiproject

MultiProject | .December 12, 2021 325

https://foliant-docs.github.io/docs/config/#env
https://foliant-docs.github.io/docs/config/#env

Usage
The subproject location may be specified as a local path, or as a Git repository with
optional revision (branch name, commit hash or another reference).

Example of chapters section in the project config:

1 chapters:

2 - index.md

3 - !from local_dir

4 - !from https://github.com/foliant-docs/docs.git

5 - !from https://github.com/some_other_group/

some_other_repo.git#develop

Before building the documentation superproject, Multiproject extension calls Foliant
to build each subproject into pre target, and then moves the directories of built
subprojects into the source directory of the superproject (usually called as src).

Limitations:

— directory names of subprojects of the same level should be unique;
— source directories of the multiproject and of all the subprojects should have the

same names; also they should be located inside the “root” directories of corre-
sponding projects;

— config files of the multiproject and of all the subprojects should have the same
names;

— subprojects from remote Git repositories do not need to be newly cloned before
each build, but local subprojects are copied into cache before each build;

— it’s undesirable if the path of the “root” directory of the top-level project contains
.multiprojectcache directory as its some part.

Slugs
Slugs is an extension for Foliant to generate custom slugs from arbitrary lists of values.

It resolves !slug, !date, !version, and !commit_count YAML tags in the
project config.

The list of values after the !slug tag is replaced with the string that joins these
values using - delimeter. Spaces () in the values are replaced with underscores (_).

The value of the node that contains the !date tag is replaced with the current local
date.

Slugs | .December 12, 2021 326

The list of values after the !version tag is replaced with the string that joins these
values using . delimeter.

The value of the node that contains the !commit_count tag is replaced by the
number of commits in the current Git repository.

Installation

$ pip install foliantcontrib.slugs

Usage

Slug

Config example:

1 title: &title My Awesome Project

2 version: &version 1.0

3 slug: !slug

4 - *title

5 - *version

6 - !date

Example of the resulting slug:

My_Awesome_Project-1.0-2018-05-10

Note that backends allow to override the top-level slug, so you may define different
custom slugs for each backend:

1 backend_config:

2 pandoc:

3 slug: !slug

4 - *title

5 - *version

6 - !date

7 mkdocs:

8 slug: my_awesome_project

Version

Config example:

Slugs | .December 12, 2021 327

version: !version [1, 0, 5]

Resulting version:

1.0.5

If you wish to use the number of commits in the current branch as a part of your
version, add the !commit_count tag:

1 version: !version

2 - 1

3 - !commit_count

Resulting version:

1.85

The !commit_count tag accepts two arguments:

— name of the branch to count commits in;
— correction—a positive or negative number to adjust the commit count.

Suppose you want to bump the major version and start counting commits from the
beginning. Also you want to use only number of commits in the master branch. So
your config will look like this:

1 version: !version

2 - 2

3 - !commit_count master -85

Result:

2.0

YAMLInclude
pypipypi v1.0.1v1.0.1

GitHubGitHub v1.0.1v1.0.1

YAMLInclude | .December 12, 2021 328

https://pypi.org/project/foliantcontrib.yaml_include/
https://github.com/foliant-docs/foliantcontrib.yaml_include

YAMLInclude Extension
YAMLInclude is a configuration extension for Foliant to include parts of configuration
from YAML-files.

It resolves !include YAML tag in the project config and inside XML-tags parameters.

Installation

$ pip install foliantcontrib.yaml_include

Usage
The syntax of the !include YAML tag is:

!include <file>[#<key>]

Where file may be

— path to local file in Foliant project root,
— direct link to a file on remote server.

An optional #<key> part is used to get a key from the mapping stored inside <file

>.

Including a local file

Config example:

chapters: !include chapters.yml

In this example the chapters.yml file should be placed in your Foliant project
root.

if the contents of chapters.yml are as follows:

1 # chapters.yml

2

3 - index.md

4 - description.md

then the resulting config after applying the extension will be:

1 chapters:

2 - index.md

3 - description.md

YAMLInclude | .December 12, 2021 329

Including part of a local file

Config example:

chapters: !include chapters.yml#chapters_for_pdf

In this example the chapters.yml file should be placed in your Foliant project
root.

if the contents of chapters.yml are as follows:

1 # chapters.yml

2

3 chapters_for_site:

4 - index_site.md

5 - description_site.md

6 chapters_for_pdf:

7 - index.md

8 - description.md

then the resulting config after applying the extension will be:

1 chapters:

2 - index.md

3 - description.md

Including a remote file

Config example:

chapters: !include http://example.com/chapters.yml

In this example the chapters.yml file is stored on the website http://example

.com/.

if the contents of chapters.yml are as follows:

1 # chapters.yml

2

3 - index.md

4 - description.md

then the resulting config after applying the extension will be:

YAMLInclude | .December 12, 2021 330

1 chapters:

2 - index.md

3 - description.md

Including part of a remote file

Config example:

chapters: !include http://example.com/chapters.yml#

chapters_for_pdf

In this example the chapters.yml file is stored on the website http://example

.com/.

if the contents of chapters.yml are as follows:

1 # chapters.yml

2

3 chapters_for_site:

4 - index_site.md

5 - description_site.md

6 chapters_for_pdf:

7 - index.md

8 - description.md

then the resulting config after applying the extension will be:

1 chapters:

2 - index.md

3 - description.md

YAMLInclude | .December 12, 2021 331

History of Releases
Here is the single linear history of releases of Foliant and its extensions. It’s also
available as an RSS feed.

[2021-12-12] foliantcontrib.confluence 0.6.20
— Support for Confluence Cloud option to remove HTML formatting.
— Page URL is now taken from the properties.
— Article change is now detected by article body and title hash, stored in page prop-

erties.

[2021-12-12] foliantcontrib.replace 2.0.0
— Preprocessor rewritten.

[2021-12-12] foliantcontrib.superlinks 1.0.12
— Anchors added to beginning of files are not random anymore.

[2021-10-07] foliantcontrib.pandoc 1.1.2
— Add odt and epub targets basic support.

[2021-08-17] foliantcontrib.dbdoc 0.1.8
— DBMS python connectors are only imported on use.

[2021-08-04] foliantcontrib.argdown 0.1.1
— Embed dot and graphml formats with as_image=False.

[2021-08-03] foliantcontrib.argdown 0.1.0
— Initial release

History of Releases | .December 12, 2021 332

https://foliant-docs.github.io/docs/rss.xml
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.argdown.git
https://github.com/foliant-docs/foliantcontrib.argdown.git

[2021-08-03] foliantcontrib.superlinks 1.0.11
— Fix imports.

[2021-08-02] foliantcontrib.bpmn 1.0.1
— Initial release

[2021-08-02] foliantcontrib.pgsqldoc 1.1.7
— New utils module

[2021-08-02] foliantcontrib.apilinks 1.2.6
— New utils module

[2021-08-02] foliantcontrib.utils 1.0.3
— PreprocessorExt: add debug_msg param to _warning method.

[2021-07-21] foliantcontrib.pandoc 1.1.1
— Passing metadata parameters via config.
— Fix: images didn’t render during separate sections build.

[2021-07-21] foliantcontrib.meta 1.3.3
— New utils module.

[2021-07-21] foliantcontrib.csvtables 1.0.2
— New utils module.

[2021-07-21] foliantcontrib.mermaid 1.0.2
— New utils module.

[2021-08-03] foliantcontrib.superlinks 1.0.11 | .December 12, 2021 333

https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.bpmn.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.utils.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.csvtables.git
https://github.com/foliant-docs/foliantcontrib.mermaid.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git

[2021-07-21] foliantcontrib.ramldoc 1.0.2
— New utils module.

[2021-07-21] foliantcontrib.admonitions 1.0.1
— New utils module.

[2021-07-21] foliantcontrib.metagraph 0.1.3
— New utils module.

[2021-07-21] foliantcontrib.swaggerdoc 1.2.4
— New utils module.

[2021-07-20] foliantcontrib.apireferences 1.0.2
— New utils module.

[2021-07-20] foliantcontrib.dbdoc 0.1.7
— New utils module.

[2021-07-20] foliantcontrib.dbmldoc 0.3.1
— New utils module.
— Update PyDBML parser to 0.4.1.

[2021-07-20] foliantcontrib.plantuml 1.0.10
— New utils module.

[2021-07-20] foliantcontrib.graphviz 1.1.5
— New utils module.
— Output syntax errors in stdout.

[2021-07-21] foliantcontrib.ramldoc 1.0.2 | .December 12, 2021 334

https://github.com/foliant-docs/foliantcontrib.ramldoc.git
https://github.com/foliant-docs/foliantcontrib.admonitions.git
https://github.com/foliant-docs/foliantcontrib.metagraph.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.apireferences.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.dbmldoc.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.ramldoc.git

[2021-07-20] foliantcontrib.templateparser 1.0.6
— New utils module.

[2021-07-20] foliantcontrib.alt_structure 0.2.1
— New utils module.

[2021-07-20] foliantcontrib.anchors 1.0.7
— New utils module.

[2021-07-20] foliantcontrib.confluence 0.6.19
— New utils module.

[2021-07-19] foliantcontrib.superlinks 1.0.10
— New utils module.

[2021-07-15] foliantcontrib.utils 1.0.2
— Fix error in initial values for combined options classes.
— Combined options classes now clone input dicts and lists.
— Combined options: fix validate_in.
— Header Anchors: fix slate id generator.
— PreprocessorExt: allow_fail now supports methods without args.

[2021-07-14] foliantcontrib.utils 1.0.1
— All utils from separate repositories now reside here.

[2021-06-18] foliantcontrib.plantuml 1.0.9
— Diagrams with same options now generate in single PlantUML instance.
— Error tracebacks now are shown in console, error images are not generated.
— Markdown image tags for broken diagrams are not inserted so they won’t crash the

build of the project.

[2021-07-20] foliantcontrib.templateparser 1.0.6 | .December 12, 2021 335

https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.alt_structure.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.utils.git
https://github.com/foliant-docs/foliantcontrib.utils.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git

[2021-05-20] foliantcontrib.dbmldoc 0.3.0
— Update PyDBML parser to 0.4.0. This breaks backward compatibility with previous

versions (reference cols are now lists).

[2021-05-07] foliantcontrib.multiproject 1.0.15
— Fix crash caused by YAML-tags in subproject config.

[2021-05-07] foliantcontrib.yaml_include 1.0.1
— Better logging.
— Improved paths handling.

[2021-05-06] foliantcontrib.downloadfile 1.0.1
— Better work with multiproject.
— fail_fast parameter.

[2021-05-04] foliantcontrib.downloadfile 1.0.0
— Initial release.

[2021-04-20] foliantcontrib.anchors 1.0.6
— Fix: missing dependency in setup.py

[2021-04-01] foliantcontrib.confluence 0.6.18
— Fix: external images didn’t work.

[2021-03-11] foliantcontrib.apilinks 1.2.5
— APILinks is now deprecated. Use APIReferences instead.

[2021-03-11] foliantcontrib.apireferences 1.0.1
— Better logging and output.
— New: warning_level param.

[2021-05-20] foliantcontrib.dbmldoc 0.3.0 | .December 12, 2021 336

https://github.com/foliant-docs/foliantcontrib.dbmldoc.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.yaml_include.git
https://github.com/foliant-docs/foliantcontrib.downloadfile.git
https://github.com/foliant-docs/foliantcontrib.downloadfile.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apireferences.git
https://github.com/foliant-docs/foliantcontrib.dbmldoc.git

[2021-03-10] foliantcontrib.confluence 0.6.17
— Fix: parent_id param didn’t work.

[2021-03-10] foliantcontrib.yaml_include 1.0.0
— Initial release.

[2021-03-09] foliantcontrib.apireferences 1.0.0
— Initial release.

[2021-02-18] foliantcontrib.confluence 0.6.16
— New: attaching arbitrary files with help of attachments parameter.
— New: supply attachments implicitly using ac:image tag, without mentioning

them in attachments parameter.
— Attachments and images which were referenced several times on a page will now

only be uploaded once.
— Allow !path, !project_path modifiers inside ac:attachment param for

ac:link, ac:image.

[2021-02-03] foliantcontrib.apilinks 1.2.4
— Better warning when there’s error in API configuration
— Trailing slash is not enforced in generated urls. Previously didn’t work with *.html

sites

[2021-02-01] foliantcontrib.plantuml 1.0.8
— Config options now can be overriden in tag options.
— Add as_image option, which allows (when false) to insert svg-code instead of

image into the document.

[2021-01-25] foliantcontrib.dbdoc 0.1.6
— Templates now support imports and includes from the same folder.

[2021-03-10] foliantcontrib.confluence 0.6.17 | .December 12, 2021 337

https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.yaml_include.git
https://github.com/foliant-docs/foliantcontrib.apireferences.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.confluence.git

— Fix: Remove TEXT_VC field from Oracle views query, which is absent on some ver-
sions.

[2021-01-22] foliantcontrib.apilinks 1.2.3
— Added options login and password for basic authentication on API sites.

[2020-12-18] foliantcontrib.confluence 0.6.15
— New: [experimental] raw_confluence tags are now not necessary for ac:...

tags, they are escaped automatically.
— New: supply images with additional parameters using ac:image tag.
— New: verify_ssl parameter.

[2020-12-04] foliantcontrib.templateparser 1.0.5
— Config, backend name and target are now available under config, backend

and target variables.
— All the above variables along with meta and meta_object are now moved from

_foliant_context into _foliant_vars variable.
— Fix: external context was overriding meta variables.

[2020-12-03] foliantcontrib.replace 1.0.5
— Bug fixed with several replaceable items in one string.

[2020-11-27] foliantcontrib.superlinks 1.0.9
— Fix: BOF anchors bug
— Fix: common paths processing

[2020-11-17] foliantcontrib.customids 1.0.7
— Styles are now inserted after YAML Front Matter if that is present.

[2020-11-16] foliantcontrib.utils 1.0.0
— Initial release.

[2021-01-22] foliantcontrib.apilinks 1.2.3 | .December 12, 2021 338

https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.utils.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git

[2020-11-10] foliantcontrib.dbdoc 0.1.5
— New: trusted_connection option for Microsoft SQL Server

[2020-11-02] foliantcontrib.apilinks 1.2.2
— Fix: Endnpoint prefix was ignored in swagger and redoc site backends.
— Better logging.

[2020-10-28] foliantcontrib.superlinks 1.0.8
— Fix: proper relative path generation for links.
— Fix: multiple issues when !path modifier is used in the link tag.
— BOF anchors now won’t be added for mkdocs backend.

[2020-10-20] foliantcontrib.pandoc 1.1.0
— Option to build separate chapters (sections) into separate files.

[2020-10-16] foliantcontrib.confluence 0.6.14
— Add code blocks processing for Confluence preprocessor.

[2020-10-14] foliantcontrib.graphviz 1.1.4
— Fix: issue with MkDocs: raw svgs are now wrapped in div tag.

[2020-10-08] foliantcontrib.superlinks 1.0.7
— If tag body it empty, superlinks will try to guess the right caption of the link:

— referenced title for links by title,
— meta section title for links by meta section,
— heading title for links by CustomIDs,
— title from config or first heading title in the file for links to file,
— anchor name for links by anchors.

[2020-10-07] foliantcontrib.apilinks 1.2.1
— Renamed spec_url to spec because it may also be a path to local file,

[2020-11-10] foliantcontrib.dbdoc 0.1.5 | .December 12, 2021 339

https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git

— Improved swagger.json parsing
— Added Redoc support (redoc site backend)

[2020-10-06] foliantcontrib.apilinks 1.2.0
— Added Swagger UI support,
— Anchors are now generated properly, with header_anchors tool. Added

site_backend optional param to determine for which backend the anchors
should be generated.

[2020-09-16] foliantcontrib.archeme 1.0.3
— Add config_concat option.

[2020-09-07] foliantcontrib.reindexer 1.0.1
— Add the fulltext_config option.
— Fix web application example: mention the content field, not only title, in

the query filter settings.

[2020-08-26] foliantcontrib.superlinks 1.0.6
— Improved Confluence links: if section is not uploaded to Confluence, reference to

overall project (if it is uploaded to Confluence).

[2020-08-25] foliantcontrib.superlinks 1.0.5
— New: added Confluence backend support.
— Fix: links were corrupted when customids were used.
— Fix: several other bug fixes and optimizations.

[2020-08-24] foliantcontrib.swaggerdoc 1.2.3
— Fix: build failed when spec referenced to other files with $ref.

[2020-08-21] foliantcontrib.confluence 0.6.13
— Fix: cache dir for preprocessor was not created

[2020-10-06] foliantcontrib.apilinks 1.2.0 | .December 12, 2021 340

https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.archeme.git
https://github.com/foliant-docs/foliantcontrib.reindexer.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git

[2020-08-21] foliantcontrib.dbdoc 0.1.4
— New: Added support for MySQL

[2020-08-20] foliantcontrib.dbdoc 0.1.3
— New: Added support for Microsoft SQL Server

[2020-07-31] foliantcontrib.escapecode 1.0.4
— Addition to normalization: remove BOM.

[2020-07-29] foliantcontrib.includes 1.1.13
— When getting the included content by URL, take into account the charset pa-

rameter of the Content-Type response header field.

[2020-07-29] foliantcontrib.includes 1.1.12
— Add the wrap_code and code_language attributes to mark up the included

content as fence code block or inline code.
— Prevent to create cache directory when it’s not needed. Improve code style. Refac-

tor a little.

[2020-07-22] foliant 1.0.12
— Add the disable_implicit_unescape option. Remove warning when

escape_code is not set.
— Support the !env YAML tag to use environment variables in the project config.
— Allow to specify custom directory to store logs with the --logs|-l command

line option.
— Flush output to STDOUT in progress status messages and in the foliant.utils

.output() method.
— Get and log the names and versions of all installed Foliant-related packages.
— Do not raise exception of the same type that is raised by a preprocessor, raise

RuntimeError instead because some exceptions take more arguments than one.

[2020-08-21] foliantcontrib.dbdoc 0.1.4 | .December 12, 2021 341

https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.escapecode.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git

[2020-07-22] foliantcontrib.pandoc 1.0.11
— Do not re-raise an exception of the same type as raised, raise RuntimeError

instead, it’s needed to avoid non-informative error messages.

[2020-07-22] foliantcontrib.mkdocs 1.0.12
— Do not re-raise an exception of the same type as raised, raise RuntimeError

instead, it’s needed to avoid non-informative error messages.

[2020-07-20] foliantcontrib.multiproject 1.0.14
— Support Foliant Core 1.0.12, write logs to the directory that is specified for the

multiproject.

[2020-07-19] foliantcontrib.escapecode 1.0.3
— Do not fail the preprocessor if saved code is not found, show warning message

instead.

[2020-07-14] foliantcontrib.confluence 0.6.12
— New: option to store passwords in passfile.
— New: nohead option to crop first title from the page.
— Fix: better error reporting after updated atlassian-python-api package.
— New: if you specified only space_key param in metadata and no title, section

heading will be used as title.
— Fix: if hierarchy is created on the test run, missing parents by title are now ignored

[2020-07-09] foliantcontrib.multilinetables 1.2.3
— Problem with strings containing only hyphens fixed (critical for narrow columns

with lists in grid tables).

[2020-07-09] foliantcontrib.includes 1.1.11
— Add the extensions config parameter to process file types different from .md.
— Add the url attribute to include content that is available by HTTP(S) URL.

[2020-07-22] foliantcontrib.pandoc 1.0.11 | .December 12, 2021 342

https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.escapecode.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git

[2020-06-16] foliantcontrib.confluence 0.6.11
— Fix: XML error in code block conversion.

[2020-06-10] foliantcontrib.testrail 1.3.1
— Now it’s possible to use one image in several test-cases and process it correctly

with move_imgs_from_text parameter.

[2020-06-09] foliantcontrib.testrail 1.3.0
— New parameter:

— move_imgs_from_text — converts image links in test cases to ordinary
markdown-links, and adds all links to params variable to use in jinja template.

— Some readme.md bugs fixed.

[2020-06-09] foliantcontrib.flatten 1.0.7
— Fix: bug in rewrite local links regex.

[2020-06-08] foliantcontrib.testrail 1.2.2
— Processing of several images in one case-step fixed.

[2020-06-05] foliantcontrib.dbdoc 0.1.2
— Fix: schema filter in Oracle functions query

[2020-06-05] foliantcontrib.swaggerdoc 1.2.2
— Fix spec path issue.
— Fix: jinja mode default template wansn’t copied.

[2020-06-05] foliantcontrib.dbdoc 0.1.1
— New: Add views query to components
— Fix: Oracle triggers query
— Fix: Fix both PostgreSQL and Oracle templates

[2020-06-16] foliantcontrib.confluence 0.6.11 | .December 12, 2021 343

https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.confluence.git

[2020-06-03] foliantcontrib.dbmldoc 0.2.4
— Pydbml parser version updated to 0.3.2
— Updated templates

[2020-06-02] foliantcontrib.pgsqldoc 1.1.6
— Preprocessor is now deprecated. Please, use DBDoc instead:

https://github.com/foliant-docs/foliantcontrib.dbdoc

[2020-06-02] foliantcontrib.dbdoc 0.1.0
— Initial release

[2020-05-28] foliantcontrib.testrail 1.2.1
— Bug with copying nonexistent folder to source fixed.

[2020-05-27] foliantcontrib.bindfigma 1.0.3
— Fix bug in caching.

[2020-05-27] foliantcontrib.bindfigma 1.0.2
— Add api_caching option. Add source Markdown file path to the messages writ-

ten to STDOUT.

[2020-05-26] foliantcontrib.testrail 1.2.0
— Downloading of images from test cases implemented.
— New parameter:

— img_folder – folder name to store downloaded images.
— Renamed parameters:

— rewrite_src_file -> rewrite_src_files,
— screenshots_ext -> img_ext.

— Paths processing fixed.

[2020-06-03] foliantcontrib.dbmldoc 0.2.4 | .December 12, 2021 344

https://github.com/foliant-docs/foliantcontrib.dbmldoc.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.dbdoc.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.bindfigma.git
https://github.com/foliant-docs/foliantcontrib.bindfigma.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.dbmldoc.git

[2020-05-22] foliantcontrib.templateparser 1.0.4
— All variables, supplied in context, are also available inside the

_foliant_context variable
— You can now supply a link to file on remote server in the ext_context parameter.
— External context yaml-file now may be not a dictionary. In this case it will be

available under the context template variable.

[2020-05-20] foliantcontrib.superlinks 1.0.4
— Fix: bug with chapters.

[2020-04-23] foliantcontrib.archeme 1.0.2
— Fix the same bug in stronger way.

[2020-04-23] foliantcontrib.archeme 1.0.1
— Fix very strange bug with modules cache.

[2020-04-22] foliantcontrib.dbmldoc 0.1
— Initial release

[2020-04-17] foliantcontrib.multiproject 1.0.13
— Keep temporary directories of built subprojects. It is needed when local includes

that rewrite image paths are used.

[2020-04-14] foliantcontrib.elasticsearch 1.0.4
— Add copy action.

[2020-04-10] foliantcontrib.replace 1.0.4
— Replace in links and images fixed.

[2020-05-22] foliantcontrib.templateparser 1.0.4 | .December 12, 2021 345

https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.archeme.git
https://github.com/foliant-docs/foliantcontrib.archeme.git
https://github.com/foliant-docs/foliantcontrib.dbmldoc.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.elasticsearch.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git

[2020-04-10] foliantcontrib.alt_structure 0.2.0
— Preprocessor now doesn’t read config file, which previously caused MultiProject to

run second time.
— Registry is now flat dictionary.
— Structure is now supplied via dictionary.

[2020-04-10] foliantcontrib.showcommits 1.0.2
— Add try_default_path and escape_html options.

[2020-04-09] foliantcontrib.elasticsearch 1.0.3
— Add require_env option.

[2020-04-06] foliantcontrib.meta 1.3.2
— Cutomids are now cut out from titles.
— Added logging.
— Meta commands now support --debug -d and --quiet -q arguments.
— meta generate command now gives some verbose output after work.
— Fix: get_section_by_offset didn’t count YFM.

[2020-04-02] foliantcontrib.confluence 0.6.10
— Disabled tabbed code blocks conversion because of conflicts.

[2020-04-01] foliantcontrib.testcoverage 0.1.1
— Support meta 1.3.0

[2020-04-01] foliantcontrib.testcoverage 0.1.0
— Initial release.

[2020-04-01] foliantcontrib.metagraph 0.1.2
— Metadata is now taken from src_dir to minimize possible conflicts with other pre-

processors.

[2020-04-10] foliantcontrib.alt_structure 0.2.0 | .December 12, 2021 346

https://github.com/foliant-docs/foliantcontrib.alt_structure.git
https://github.com/foliant-docs/foliantcontrib.showcommits.git
https://github.com/foliant-docs/foliantcontrib.elasticsearch.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.testcoverage.git
https://github.com/foliant-docs/foliantcontrib.testcoverage.git
https://github.com/foliant-docs/foliantcontrib.metagraph.git
https://github.com/foliant-docs/foliantcontrib.alt_structure.git

[2020-03-27] foliantcontrib.metagraph 0.1.1
— New parameter: draw_all, which controls which sections are included.

[2020-03-26] foliantcontrib.metagraph 0.1.0
— Initial release

[2020-03-26] foliantcontrib.templateparser 1.0.3
— Now meta dictionary is available inside templates under meta variable.
— Project’s meta object is available inside templates under meta_object variable.

[2020-03-26] foliantcontrib.meta 1.3.1
— remove_meta now also trims whitespaces in the beginning of the file after re-

moving YFM
— Main section’s title is now set to first heading, if:

— the first heading is a 1-level heading (#),
— the first heading doesn’t have meta.

— Fix: YFM was not included in meta in some cases

[2020-03-25] foliantcontrib.confluence 0.6.8
— Now foliant-anchors are always added even for new pages

[2020-03-25] foliantcontrib.confluence 0.6.9
— Introducing import from confluence into Foliant with confluence tag
— Fix: solved conflicts between inline comments and macros (including anchors)
— Fix: backend crashed if new page content was empty
— Markdown code blocks are now converted into code-block macros
— Markdown task lists are now converted into task-list macros
— New test_run option

[2020-03-12] foliantcontrib.testrail 1.1.11
— Misprint fixed.

[2020-03-27] foliantcontrib.metagraph 0.1.1 | .December 12, 2021 347

https://github.com/foliant-docs/foliantcontrib.metagraph.git
https://github.com/foliant-docs/foliantcontrib.metagraph.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.metagraph.git

[2020-03-12] foliantcontrib.testrail 1.1.10
— Bug with template handling fixed.

[2020-03-11] foliantcontrib.confluence 0.6.7
— Fix another conflict with escapecode

[2020-03-05] foliantcontrib.graphviz 1.1.3
— Fix: as_image takes effect only with svg format.

[2020-02-28] foliantcontrib.bindfigma 1.0.1
— Add hyperlinks and multi_delimeter options.
— Output error messages to STDOUT.
— Minor improvements.

[2020-02-12] foliantcontrib.alt_structure 0.1.2
— Fix: Remove config check from init

[2020-02-10] foliantcontrib.alt_structure 0.1.1
— Initial release

[2020-02-06] foliantcontrib.mkdocs 1.0.11
— Get captions for pages from workingdir instead of src_dir

[2020-02-04] foliantcontrib.slate 1.0.8
— Support meta 1.3

[2020-02-04] foliantcontrib.superlinks 1.0.3
— Support meta 1.3.

[2020-03-12] foliantcontrib.testrail 1.1.10 | .December 12, 2021 348

https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.bindfigma.git
https://github.com/foliant-docs/foliantcontrib.alt_structure.git
https://github.com/foliant-docs/foliantcontrib.alt_structure.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.testrail.git

[2020-02-04] foliantcontrib.includes 1.1.9
— Support meta 1.3.

[2020-02-04] foliantcontrib.meta 1.3.0
— Restructure modules to aid import errors. Meta-related functions and classes are

now available independantly from foliant.meta package.

[2020-02-04] foliantcontrib.confluence 0.6.6
— Support meta 1.3
— Now foliant-anchors are always added around uploaded content
— Anchors are now case insensitive

[2020-02-03] foliantcontrib.meta 1.2.3
— Add get_chapter method to Meta class.
— Add Developer’s guide to readme.

[2020-01-31] foliantcontrib.elasticsearch 1.0.2
— Add format option. Use escape_html only for format: plaintext.

[2020-01-31] foliantcontrib.elasticsearch 1.0.1
— Add escape_html option. Perform actions delete, create by default. Fix

HTML markup in Web application example.

[2020-01-22] foliantcontrib.confluence 0.6.5
— Fix: build crashed when several resolved inline comments referred to same string

[2019-12-24] foliantcontrib.superlinks 1.0.2
— add dependencies order check.
— rename anchor parameter to id.
— add anchor parameter for possibly global anchor search.
— link to anchors in Confluence are now partly supported.

[2020-02-04] foliantcontrib.includes 1.1.9 | .December 12, 2021 349

https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.elasticsearch.git
https://github.com/foliant-docs/foliantcontrib.elasticsearch.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.includes.git

[2019-12-24] foliantcontrib.anchors 1.0.4
— Applied anchors are now checked from all chapters for flat backends.

[2019-12-24] foliantcontrib.testrail 1.1.9
— Function to get case data by id added.

[2019-12-23] foliantcontrib.superlinks 1.0.1
— Initial release.

[2019-12-20] foliantcontrib.anchors 1.0.3
— Better regex patterns.
— Conflicts are now determined for each backend separately.
— Add confluence anchors.

[2019-12-20] foliantcontrib.meta 1.2.2
— Don’t require empty line between heading and meta tag.
— Allow comments in YFM.
— Better patterns for sections detection.

[2019-12-12] foliantcontrib.showcommits 1.0.1
— Fix template processing. Log repo path.

[2019-12-12] foliantcontrib.flatten 1.0.6
— Rewrite local links (e.g. some_file.md#some_id → #some_id).

[2019-12-04] foliantcontrib.slate 1.0.7
— Fix: images are preserved in the output, even from subfolders.
— YAML Front Matter from the sources is now ignored.

[2019-12-24] foliantcontrib.anchors 1.0.4 | .December 12, 2021 350

https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.superlinks.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.showcommits.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.anchors.git

[2019-12-02] foliantcontrib.init 1.0.8
— Add comment to Dockerfile with option to use Foliant full image.
— Remove slugs from docker-compose. Now the service is always named foliant.

[2019-11-22] foliantcontrib.meta 1.2.1
— Fix bug with imports.

[2019-11-21] foliantcontrib.meta 1.2.0
— Support sections
— meta.yml format restructure

[2019-11-21] foliantcontrib.confluence 0.6.4
— Support meta 1.2. Now you can publish sections to confluence.

[2019-11-21] foliantcontrib.includes 1.1.8
— Support meta 1.2.

[2019-11-20] foliantcontrib.imgcaptions 1.0.2
— Fix: stylesheet_path only worked with the !project_path modifier.
— Add the template parameter to customize the caption HTML tag.

[2019-11-09] foliantcontrib.mdtopdf 1.0.0
— Initial release.

[2019-11-06] foliantcontrib.ramldoc 1.0.1
— Initial release

[2019-10-28] foliantcontrib.aglio 1.0.0
— Initial release

[2019-12-02] foliantcontrib.init 1.0.8 | .December 12, 2021 351

https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.imgcaptions.git
https://github.com/foliant-docs/foliantcontrib.mdtopdf.git
https://github.com/foliant-docs/foliantcontrib.ramldoc.git
https://github.com/foliant-docs/foliantcontrib.aglio.git
https://github.com/foliant-docs/foliantcontrib.init.git

[2019-10-25] foliantcontrib.slate 1.0.6
— Fix bug with error catching introduced in 1.0.5

[2019-10-25] foliantcontrib.slate 1.0.5
— Better error reporting.
— Fixes for working with includes.

[2019-10-16] foliantcontrib.escapecode 1.0.2
— Improve flexibility: add new actions, allow to override defaults.

[2019-10-16] foliantcontrib.multiproject 1.0.12
— Take into account the quiet flag. Require Foliant 1.0.11 for this reason.

[2019-10-16] foliantcontrib.includes 1.1.7
— Allow to specify custom options for EscapeCode preprocessor as the

escape_code.options config parameter value.

[2019-10-16] foliant 1.0.11
— Allow to specify custom options for EscapeCode preprocessor as the

escape_code.options config parameter value.
— Pass the quiet flag to BaseParser() as an optional argument for using in

config extensions.

[2019-10-15] foliantcontrib.subset 1.0.9
— Fix incompatibilities with newer versions of modules: Cliar, PyYAML.

[2019-10-10] foliantcontrib.multiproject 1.0.11
— Allow recursive processing of nested subprojects.
— Allow to specify type (HTML/Markdown) and location for repo links.
— Fix incompatibility with new Cliar: key names should not contain hyphens.

[2019-10-25] foliantcontrib.slate 1.0.6 | .December 12, 2021 352

https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.escapecode.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.slate.git

[2019-10-07] foliantcontrib.confluence 0.6.3
— Remove resolved inline comments as they mix up with unresolved.

[2019-10-04] foliantcontrib.mermaid 1.0.1
— Better error reporting

[2019-10-01] foliantcontrib.confluence 0.6.2
— Added parent_title parameter.
— Fix: images were not uploaded for new pages.

[2019-10-01] foliantcontrib.multiproject 1.0.10
— Allow the first heading to be located not in the beginning of a document.

[2019-09-26] foliantcontrib.flatten 1.0.5
— Add the keep_sources option to keep original files in the temporary working

directory after flattening.

[2019-09-25] foliantcontrib.confluence 0.6.0
— Now content is put in place of foliant anchor or instead of foliant_start

… foliant_end anchors on the target page. If no anchors on page — content
replaces the whole body.

— New modes (backwards compatibility is broken!).
— Now following files are available for debug in cache dir: 1. markdown before con-

version to html. 2. Converted to HTML. 3. Final XHTML source which is uploaded
to confluence.

— Working (but far from perfect) detection if file was changed.
— Only upload changed attachments.
— Updating attachments instead of deleting and uploading again.

[2019-09-19] foliantcontrib.confluence 0.5.2
— Completely rewrite restoring inline comments feature.

[2019-10-07] foliantcontrib.confluence 0.6.3 | .December 12, 2021 353

https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.mermaid.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.confluence.git

— Add restore_comments and resolve_if_changed emergency options.
— Allow insert raw confluence code (macros, etc) inside <raw_confluence> tag.

[2019-09-19] foliantcontrib.history 1.0.8
— Allow to ignore merge commits in from: commits mode.

[2019-09-18] foliantcontrib.history 1.0.7
— Allow to get repo names from README files.

[2019-09-16] foliantcontrib.history 1.0.6
— Fix some regex patterns.

[2019-09-16] foliantcontrib.history 1.0.5
— Allow to generate history based on tags and commits.

[2019-09-13] foliantcontrib.history 1.0.4
— Add templates for target Markdown headings and RSS items titles.

[2019-09-13] foliantcontrib.history 1.0.3
— Escape regex metacharacters in headings.

[2019-09-10] foliantcontrib.epsconvert 1.0.7
— Fix image reference detection pattern, other minor fixes.

[2019-09-09] foliantcontrib.history 1.0.2
— Do not generate common top-level heading of target Markdown content.

[2019-09-06] foliantcontrib.history 1.0.1
— Add RSS feed generation.

[2019-09-19] foliantcontrib.history 1.0.8 | .December 12, 2021 354

https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git
https://github.com/foliant-docs/foliantcontrib.history.git

[2019-08-28] foliantcontrib.includes 1.1.6
— Escape regular expression metacharacters in starting and ending headings, IDs,

modifiers.

[2019-08-27] foliantcontrib.includes 1.1.5
— Remove meta blocks from the included content.

[2019-08-26] foliantcontrib.mkdocs 1.0.10
— Fix pattern for heading detection.

[2019-08-26] foliantcontrib.swaggerdoc 1.2.0
— Add spec_path and spec_url parameters.
— All path tag parameters are now loaded relative to current file.
— Better logging and error reporting

[2019-08-26] foliantcontrib.customids 1.0.6
— Allow to define custom styles for headings of each level.

[2019-08-26] foliantcontrib.confluence 0.4.1
— Fix: conflict with escape_code

[2019-08-23] foliantcontrib.includes 1.1.4
— Allow for the starting and ending headings to be 1-character long.

[2019-08-23] foliantcontrib.confluence 0.4.0
— Fix: attachments were not uploaded for nonexistent pages
— Change confluence api wrapper to atlassian-python-api
— Rename backend to confluence
— Better error reporting

[2019-08-28] foliantcontrib.includes 1.1.6 | .December 12, 2021 355

https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.includes.git

[2019-08-23] foliantcontrib.mkdocs 1.0.9
— Allow the first heading to be located not in the beginning of a document.

[2019-08-23] foliantcontrib.epsconvert 1.0.6
— Bug fix: update current directory path before processing of Markdown file content,

not after.

[2019-08-22] foliantcontrib.imagemagick 1.0.2
— Bug fix: update current directory path before processing of Markdown file content,

not after.

[2019-08-22] foliantcontrib.meta 1.1.0
— Remove the sections entity.
— Restructure code.

[2019-08-22] foliantcontrib.confluence 0.3.0
— Fix bug with images.
— Add multiple modes and mode parameter.
— Add toc parameter to automatically insert toc.
— Fix: upload attachments before text update (this caused images to disappear after

manually editing).

[2019-08-20] foliantcontrib.meta 1.0.3
— Add span to meta

[2019-08-16] foliantcontrib.confluence 0.2.0
— Allow to input login and/or password during build
— Added pandoc_path option
— Better logging and error catching

[2019-08-23] foliantcontrib.mkdocs 1.0.9 | .December 12, 2021 356

https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.imagemagick.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git

[2019-08-15] foliantcontrib.confluence 0.1.0
— Initial release.

[2019-08-14] foliantcontrib.includes 1.1.3
— Allow to specify IDs of anchors in the from_id and to_id attributes. Support

the to_end attribute.

[2019-08-02] foliantcontrib.escapecode 1.0.1
— Do not ignore diagram definitions. It should be possible to escape the tags used

by diagram drawing preprocessors. If some preprocessors need to work with the
content that is recognized as code, call UnescapeCode explicitly before them.

[2019-08-01] foliantcontrib.replace 1.0.3
— Fixed issue with PyYAML deprecated loader.

[2019-08-01] foliantcontrib.mermaid 1.0.0
— Initial release

[2019-07-30] foliantcontrib.includes 1.1.2
— Fix include statement regex pattern. Tags joined with | must be in non-capturing

parentheses.

[2019-07-30] foliant 1.0.10
— Add escape_code config option. To use it, escapecode and unescapecode pre-

processors must be installed.

[2019-07-30] foliantcontrib.includes 1.1.1
— Support escape_code config option. Require Foliant 1.0.10 and escapecode

preprocessor 1.0.0.
— Process sethead recursively.

[2019-08-15] foliantcontrib.confluence 0.1.0 | .December 12, 2021 357

https://github.com/foliant-docs/foliantcontrib.confluence.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.escapecode.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.mermaid.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.confluence.git

[2019-07-16] foliantcontrib.bindsympli 1.0.14
— Add width attribute to <sympli> tag.
— Refactor a little.

[2019-07-15] foliantcontrib.slugs 1.0.1
— Add !version and !commit_count YAML tags.

[2019-07-09] foliantcontrib.docus 0.2.0
— More flexible chapters parsing. Lists are now not mandatory.

[2019-07-09] foliantcontrib.docus 0.1.0
— Initial release.

[2019-07-05] foliantcontrib.runcommands 1.0.1
— Capture the output of an external command and write it to STDOUT.

[2019-07-01] foliantcontrib.meta 1.0.2
— Fix: subsections title may be specified in YFM;
— Fix: in subsections title was being cropped out

[2019-07-01] foliantcontrib.project_graph 1.0.1
— Rename rel attributes: rel_path to path, rel_id to id

— Relation types now don’t implicitly go to edge labels. Add label explicitly from
now on.

— Fixed: relations to !project_path and !rel_path didn’t work.

[2019-07-01] foliantcontrib.meta 1.0.1
— Fix: seeds for main sections were not processed.
— Add debug messages for seeds processing.

[2019-07-16] foliantcontrib.bindsympli 1.0.14 | .December 12, 2021 358

https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.slugs.git
https://github.com/foliant-docs/foliantcontrib.docus.git
https://github.com/foliant-docs/foliantcontrib.docus.git
https://github.com/foliant-docs/foliantcontrib.runcommands.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.project_graph.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git

[2019-06-28] foliantcontrib.project_graph 1.0.0
Initial release.

[2019-06-28] foliantcontrib.meta 1.0.0
Initial release.

[2019-06-28] foliantcontrib.includes 1.1.0
— Support Foliant 1.0.9. Add processing of !path, !project_path, and !

rel_path modifiers (i.e. YAML tags) in attribute values of pseudo-XML tags in-
side the included content. Replace the values that preceded by these modifiers
with absolute paths resolved depending on current context.

— Allow to specify the top-level (“root”) directory of Foliant project that the included
file belongs to, with optional project_root attribute of the <include> tag.
This can be necessary to resolve the !path and the !project_path modifiers
in the included content correctly.

— Allow to specify all necessary parameters of each include statement as attribute
values of pseudo-XML tags. Keep legacy syntax for backward compatibility.

— Update README.

[2019-06-17] foliant 1.0.9
— Process attribute values of pseudo-XML tags as YAML.
— Allow single quotes for enclosing attribute values of pseudo-XML tags.
— Add !project_path and !rel_path YAML tags.

[2019-06-14] foliantcontrib.templateparser 1.0.2
— support PyYAML 5.1

[2019-06-14] foliantcontrib.bindsympli 1.0.13
— Set 2-minutes timeout instead of default 30-seconds when launching Chromium.
— Use page.waitForSelector() instead of page.waitForNavigation().
— Use custom sleep() function for intentional delays.

[2019-06-28] foliantcontrib.project_graph 1.0.0 | .December 12, 2021 359

https://github.com/foliant-docs/foliantcontrib.project_graph.git
https://github.com/foliant-docs/foliantcontrib.meta.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.project_graph.git

[2019-06-13] foliantcontrib.badges 1.0.2
— support params which alter badge look to be supplied in tag params

[2019-06-11] foliantcontrib.badges 1.0.1
— force img mode on pdf and docx
— add target parameter

[2019-06-11] foliantcontrib.badges 1.0.0
— Initial release

[2019-06-10] foliantcontrib.admonitions 1.0.0
— Initial release.

[2019-05-20] foliantcontrib.graphviz 1.1.1
— Remove src param. (Use includes instead)
— Allow separate tags fail. Preprocessor would issue warning and continue work.

[2019-05-20] foliantcontrib.templateparser 1.0.1
— add ext_context param for external file with context
— allow separate templates to fail, the preprocessor would issue warning and skip

them

[2019-05-17] foliantcontrib.blockdiag 1.0.5
— Attributes of pseudo-XML tags have higher priority than config file options.

[2019-05-17] foliantcontrib.plantuml 1.0.6
— Attributes of <plantuml> tag have higher priority than config file options.

[2019-05-14] foliantcontrib.templateparser 1.0.0
— Initial release

[2019-06-13] foliantcontrib.badges 1.0.2 | .December 12, 2021 360

https://github.com/foliant-docs/foliantcontrib.badges.git
https://github.com/foliant-docs/foliantcontrib.badges.git
https://github.com/foliant-docs/foliantcontrib.badges.git
https://github.com/foliant-docs/foliantcontrib.admonitions.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.blockdiag.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.templateparser.git
https://github.com/foliant-docs/foliantcontrib.badges.git

[2019-04-30] foliantcontrib.bindsympli 1.0.12
— Capture the output of the Puppeter-based script and write it to STDOUT.

[2019-04-15] foliantcontrib.swaggerdoc 1.1.3
— Fix issues with json and yaml. All spec files are now loaded with yaml loader.
— Change PyYAML to ruamel.yaml
— jinja mode is deprecated, widdershins is the default mode

[2019-04-10] foliantcontrib.mkdocs 1.0.8
— Escape control characters (double quotation marks, dollar signs, backticks) that

may be used in system shell commands.

[2019-04-10] foliantcontrib.pandoc 1.0.10
— Add backticks to the set of characters that should be escaped.

[2019-04-10] foliantcontrib.pandoc 1.0.9
— Escape double quotation marks (") and dollar signs ($) which may be used in

PDF, docx, and TeX generation commands as parts of filenames, variable values,
etc. Enclose filenames that may be used in commands into double quotes.

[2019-04-05] foliantcontrib.includes 1.0.11
— Take into account the results of work of preprocessors that may be applied before

includes within a single Foliant project. Rewrite the currently processed Markdown
file path with the path of corresponding file that is located inside the project source
directory only if the currently processed Markdown file is located inside the tem-
porary working directory and the included file is located outside the temporary
working directory. Keep all paths unchanged in all other cases.

[2019-03-27] foliantcontrib.graphviz 1.0.6
— Added as_image option.

[2019-04-30] foliantcontrib.bindsympli 1.0.12 | .December 12, 2021 361

https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git

[2019-03-21] foliantcontrib.anchors 1.0.5
— Anchor headings conflicts are now more accurate, because for flat backends are

checked for all chapters.
— Anchors with illegal characters (list in readme) now will be removed.
— Preprocessor now can also work with custom ids.

[2019-03-21] foliantcontrib.anchors 1.0.2
— Added preprocessor_ext for better warnings (and better code)

[2019-03-21] foliantcontrib.anchors 1.0.1
— Added ‘element’ option to customize anchor span element.

[2019-03-21] foliantcontrib.anchors 1.0.0
— Initial release

[2019-03-14] foliantcontrib.notifier 1.0.0
Initial release.

[2019-02-21] foliantcontrib.testrail 1.1.8
— Hardcoded section headers processing removed.

[2019-02-18] foliantcontrib.replace 1.0.2
— Now it’s possible to pass the lambda function from dictionary file.
— with_confirmation parameter added.

[2019-02-15] foliantcontrib.csvtables 1.0.1
— setup.py fixed.

[2019-02-14] foliantcontrib.graphviz 1.0.4
— Moved combined_options out

[2019-03-21] foliantcontrib.anchors 1.0.5 | .December 12, 2021 362

https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.anchors.git
https://github.com/foliant-docs/foliantcontrib.notifier.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.csvtables.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.anchors.git

[2019-02-14] foliantcontrib.apilinks 1.1.3
— Moved combined_options into a submodule

[2019-02-14] foliantcontrib.pgsqldoc 1.1.5
— Move combined_options into another module

[2019-02-12] foliantcontrib.testrail 1.1.7
— Sections exclusion fixed.

[2019-02-08] foliantcontrib.testrail 1.1.6
— Case structure output fixed if any problem occurs.

[2019-02-01] foliantcontrib.testrail 1.1.5
— Bug with test case table numbering when deleting empty objects fixed.
— Readme updated.

[2019-01-21] foliantcontrib.apilinks 1.1.1
— Added filename to warnings.

[2019-01-10] foliantcontrib.bindsympli 1.0.11
— Disable images downloading from design pages only, but not from login page.

[2018-12-24] foliantcontrib.graphviz 1.0.2
— Fixed external diagrams not reloading on change.
— Fixed external diagrams are not crashing preprocessor if the file is missing.

[2018-12-20] foliantcontrib.bindsympli 1.0.10
— Check if the design page exists and the image URL is valid.

[2019-02-14] foliantcontrib.apilinks 1.1.3 | .December 12, 2021 363

https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git

[2018-12-17] foliantcontrib.graphviz 1.0.1
— Added ‘src’ tag option to load diagram source from external file.

[2018-12-17] foliantcontrib.graphviz 1.0.0
— Initial release

[2018-12-13] foliantcontrib.apilinks 1.1.0
— Prefixes are now case insensitive.
— Only prefixes which are defined are trimmed.
— New option only-defined-prefixes to ignore all prefixes which are not list-

ed in config.
— Options renamed and regrouped. Breaks backward compatibility.
— Support of several reference pattern and properties (to catch models).
— Now search on API page for headers h1, h2, h3 and h4.

[2018-12-06] foliantcontrib.subset 1.0.8
— Remove forgotten unnecessary import.

[2018-12-06] foliantcontrib.subset 1.0.7
— Move the imports of the oyaml module directly into the methods that use it.

[2018-12-06] foliantcontrib.bindsympli 1.0.9
— Move the while loop from JavaScript code to Python code.
— Add the max_attempts config option.
— Require Foliant 1.0.8 because of using the utils.output() method.

[2018-12-04] foliantcontrib.subset 1.0.6
— Fix a bug: check if subset partial config contains chapters section correctly.
— Inherit the class Cli from BaseCli, not from Cliar.

[2018-12-17] foliantcontrib.graphviz 1.0.1 | .December 12, 2021 364

https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.graphviz.git

[2018-12-04] foliantcontrib.multiproject 1.0.9
— Inherit the class Cli from BaseCli, not from Cliar.

[2018-12-04] foliantcontrib.apilinks 1.0.5
— Now both command and endpoint prefix are ensured to start from root (/).

[2018-12-03] foliantcontrib.apilinks 1.0.4
— Fix not catching errors from urllib.
— Added ‘ignoring-prefix’ option.
— Added ‘endpoint-prefix’ option into API->Name section.

[2018-11-29] foliantcontrib.apilinks 1.0.3
— Add require-prefix option.

[2018-11-29] foliantcontrib.apilinks 1.0.2
— Trim prefixes function.

[2018-11-29] foliantcontrib.apilinks 1.0.1
— Update docs, fix anchor error.
— Add all HTTP verbs to regular expression.

[2018-11-27] foliantcontrib.apilinks 1.0.0
— Initial release.

[2018-11-23] foliantcontrib.templates.preprocessor
1.0.3
— Fix packages value in setup.py of the template: use foliant.

preprocessors instead of foliantcontrib.preprocessors.
— Require Foliant 1.0.8 in setup.py of the template.

[2018-12-04] foliantcontrib.multiproject 1.0.9 | .December 12, 2021 365

https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.apilinks.git
https://github.com/foliant-docs/foliantcontrib.templates.preprocessor.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git

[2018-11-20] foliantcontrib.testrail 1.1.4
— Another bug with multi-select parameter processing fixed.

[2018-11-20] foliantcontrib.testrail 1.1.3
— Jinja templates updated.
— Bug with multi-select parameter processing fixed.

[2018-11-19] foliantcontrib.testrail 1.1.2
— Now it’s possible to use dropdown type parameters for test cases samplings.

[2018-11-19] foliantcontrib.testrail 1.1.1
— Readme updated.

[2018-11-19] foliantcontrib.testrail 1.1.0
— Removed parameters:

— platforms,
— platform_id,
— add_cases_without_platform,
— add_unpublished_cases.

— Added parameters:
— exclude_suite_ids — to exclude suites from final document by ID,
— exclude_section_ids — to exclude sections from final document by ID,
— exclude_case_ids — to exclude cases from final document by ID,
— add_case_id_to_std_table - to add column with case ID to the testing table,
— multi_param_name - name of custom TestRail multi-select parameter for cases

sampling,
— multi_param_select - values of multi-select parameter for cases sampling,
— multi_param_select_type — sampling method,
— add_cases_without_multi_param - to add cases without any value of multi-

select parameter,
— add_multi_param_to_case_header — to add values of multi-select parameter to

the case headers,

[2018-11-20] foliantcontrib.testrail 1.1.4 | .December 12, 2021 366

https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git

— add_multi_param_to_std_table — to add column with values of multi-select pa-
rameter to the testing table,

— checkbox_param_name - name of custom TestRail checkbox parameter for cases
sampling,

— checkbox_param_select_type — state of custom TestRail checkbox parameter
for cases sampling,

— choose_priorities — selection of case priorities for cases sampling,
— add_priority_to_case_header - to add priority to the case header,
— add_priority_to_std_table — to add column with priority to the testing table.

— Renamed parameters:
— add_case_id_to_case_name -> add_case_id_to_case_header.

— Fixed config parsing.

[2018-11-19] foliantcontrib.pgsqldoc 1.1.3
— Add tests; refactor code
— Fix triggers and functions; add description to functions
— Fix template

[2018-11-16] foliantcontrib.templates.preprocessor
1.0.2
— Require foliantcontrib.init 1.0.7, import the output() method.
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.multiproject 1.0.8
— Do not rewrite source Markdown file if an error occurs in RepoLink preprocessor.

[2018-11-16] foliantcontrib.macros 1.0.4
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.includes 1.0.10
— Do not rewrite source Markdown file if an error occurs.

[2018-11-19] foliantcontrib.pgsqldoc 1.1.3 | .December 12, 2021 367

https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.templates.preprocessor.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.macros.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git

[2018-11-16] foliantcontrib.imgcaptions 1.0.1
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.imagemagick 1.0.1
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.flags 1.0.2
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.epsconvert 1.0.5
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.customids 1.0.5
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.bindsympli 1.0.8
— Do not rewrite source Markdown file if an error occurs.

[2018-11-16] foliantcontrib.gupload 1.1.5
— Provide compatibility with Foliant 1.0.8.

[2018-11-16] foliantcontrib.slate 1.0.4
— Provide compatibility with Foliant 1.0.8.
— Fix preprocessor: if error source won’t be cleared.

[2018-11-14] foliantcontrib.plantuml 1.0.5
— Do not rewrite source Markdown file if an error occurs.
— Use output() method and Foliant 1.0.8.

[2018-11-16] foliantcontrib.imgcaptions 1.0.1 | .December 12, 2021 368

https://github.com/foliant-docs/foliantcontrib.imgcaptions.git
https://github.com/foliant-docs/foliantcontrib.imagemagick.git
https://github.com/foliant-docs/foliantcontrib.flags.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.imgcaptions.git

[2018-11-14] foliantcontrib.blockdiag 1.0.4
— Do not rewrite source Markdown file if an error occurs.
— Use output() method and Foliant 1.0.8.

[2018-11-14] foliantcontrib.mkdocs 1.0.7
— Provide compatibility with Foliant 1.0.8.

[2018-11-14] foliantcontrib.pandoc 1.0.8
— Provide compatibility with Foliant 1.0.8.

[2018-11-14] foliantcontrib.init 1.0.7
— Provide compatibility with Foliant 1.0.8.

[2018-11-14] foliant 1.0.8
— Restore quiet mode.
— Add the output() method for using in preprocessors.

[2018-11-14] foliantcontrib.pandoc 1.0.7
— Provide compatibility with Foliant 1.0.7.

[2018-11-14] foliantcontrib.mkdocs 1.0.6
— Provide compatibility with Foliant 1.0.7.

[2018-11-14] foliant 1.0.7
— Remove spinner made with Halo.
— Abolish quiet mode because it is useless if extensions are allowed to write anything

to STDOUT.
— Show full tracebacks in debug mode; write full tracebacks into logs.

[2018-11-14] foliantcontrib.blockdiag 1.0.4 | .December 12, 2021 369

https://github.com/foliant-docs/foliantcontrib.blockdiag.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.blockdiag.git

[2018-11-13] foliantcontrib.init 1.0.6
— Provide compatibility with Foliant 1.0.7.

[2018-11-12] foliantcontrib.multilinetables 1.2.2
— Problem with deletion of table strings containing only spaces fixed (critical for lists

in grid tables).

[2018-11-09] foliantcontrib.subset 1.0.5
— Do not use yaml alias for oyaml module to prevent possible influence of this

overriding on other parts of code.

[2018-11-09] foliantcontrib.plantuml 1.0.4
— Additionally сheck if diagram image is not saved.

[2018-11-09] foliantcontrib.blockdiag 1.0.3
— Do not fail the preprocessor if some diagrams contain errors. Write error messages

into the log.

[2018-11-08] foliantcontrib.slate 1.0.3
— Add slate preprocessor which copies the images outside src into the slate project.

[2018-11-08] foliantcontrib.testrail 1.0.7
— Minor fixes.

[2018-11-08] foliantcontrib.plantuml 1.0.3
— Add parse_raw option.
— Do not fail the preprocessor if some diagrams contain errors. Write error messages

into the log.

[2018-11-13] foliantcontrib.init 1.0.6 | .December 12, 2021 370

https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.blockdiag.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.init.git

[2018-11-08] foliantcontrib.testrail 1.0.6
— Added: parameters to exclude suite and section headers from the final document.

[2018-11-07] foliantcontrib.testrail 1.0.5
— Minor fixes.

[2018-11-07] foliantcontrib.testrail 1.0.4
— Fixed: if there is only one suite in project, it’s header not added to the contents.

[2018-11-02] foliantcontrib.gupload 1.1.4
— Code refactored.

[2018-11-01] foliantcontrib.templates.preprocessor
1.0.1
— Add package_data to setup.py.

[2018-11-01] foliantcontrib.gupload 1.1.3
— Logger bug fixed.

[2018-10-31] foliantcontrib.swaggerdoc 1.1.2
— Bug fixes
— All path parameters in config now accept either strings or !path strings

[2018-10-31] foliantcontrib.swaggerdoc 1.1.1
— Add ‘additional_json_path’ param for jinja mode
— Add support for several json_urls

[2018-10-30] foliantcontrib.multilinetables 1.2.1
— Possibility to rewrite source files added.

[2018-11-08] foliantcontrib.testrail 1.0.6 | .December 12, 2021 371

https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.templates.preprocessor.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.testrail.git

[2018-10-30] foliantcontrib.testrail 1.0.3
— Possibility to rewrite source file added.

[2018-10-29] foliantcontrib.bindsympli 1.0.7
— Use 60-seconds timeout instead of 30-seconds. Provide multiple attempts to open

pages.

[2018-10-29] foliantcontrib.testrail 1.0.2
— Suites collecting fixed.

[2018-10-29] foliantcontrib.multilinetables 1.2.0
— Convertation th the grid format added for arbitrary cell’ content (multiple para-

graphs, code blocks, lists, etc.).

[2018-10-24] foliantcontrib.multiproject 1.0.7
— Allow to override the edit_uri config option of RepoLink preprocessor with the

FOLIANT_REPOLINK_EDIT_URI system environment variable.

[2018-10-23] foliantcontrib.multiproject 1.0.6
— Tidy up CLI arguments.

[2018-10-23] foliantcontrib.subset 1.0.4
— Tidy up command line arguments one more time.

[2018-10-23] foliantcontrib.subset 1.0.3
— Tidy up command line arguments.

[2018-10-23] foliantcontrib.subset 1.0.2
— Fix a bug with object names.

[2018-10-30] foliantcontrib.testrail 1.0.3 | .December 12, 2021 372

https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.testrail.git

[2018-10-22] foliantcontrib.subset 1.0.1
— Parse YAML fairly. Merge config files recursively.

[2018-10-19] foliantcontrib.swaggerdoc 1.1.0
— Change parameter names and behavior uncompatible with 1.0.0
— Add conversion to md with widdershins

[2018-10-11] foliantcontrib.includes 1.0.9
— Don’t crash on failed repo sync (i.e. when you’re offline).

[2018-10-11] foliantcontrib.mkdocs 1.0.5
— Require MkDocs 1.0.4.

[2018-10-02] foliantcontrib.replace 1.0.1
— Strings with image links are ignored.

[2018-10-01] foliantcontrib.gupload 1.1.2
— Convert to google docs format setting added.

[2018-09-25] foliantcontrib.gupload 1.1.1
— Unification of repository name, settings section name, and command.

[2018-09-25] foliantcontrib.gupload 1.1.0
— Backend was converted to CLI extension.

[2018-09-25] foliantcontrib.multilinetables 1.1.3
— ‘targets’ option added to the preprocessor settings.

[2018-10-22] foliantcontrib.subset 1.0.1 | .December 12, 2021 373

https://github.com/foliant-docs/foliantcontrib.subset.git
https://github.com/foliant-docs/foliantcontrib.swaggerdoc.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.replace.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.subset.git

[2018-09-21] foliantcontrib.slate 1.0.2
— Rename shards_path param to shards. It now accepts string or list.
— Fix no header param.

[2018-09-20] foliantcontrib.slate 1.0.1
— Remove flatten. First chapter goes to index.html.md; all the rest go into the in-

cludes.

[2018-09-18] foliantcontrib.gupload 1.0.1
— Command line authentication was added, for example for Docker use.

[2018-09-14] foliantcontrib.testrail 1.0.1
— Preprocessor folder structure fixed.

[2018-09-12] foliantcontrib.bindsympli 1.0.6
— Do not disable images downloading. Use delays when filling email and password

fields. Wait for idle network connections when loading pages.

[2018-08-31] foliant 1.0.6
— CLI: If no args are provided, print help.
— Fix tags searching pattern in _unescape preprocessor.

[2018-08-29] foliantcontrib.pgsqldoc 1.1.2
— Queries are now ordered (not adjustable right now)
— Flexable filters instead of strict filtering by schema

[2018-08-27] foliantcontrib.pgsqldoc 1.1.1
— Fix scheme template (blank lines issue)
— Refactor queries code

[2018-09-21] foliantcontrib.slate 1.0.2 | .December 12, 2021 374

https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.slate.git
https://github.com/foliant-docs/foliantcontrib.gupload.git
https://github.com/foliant-docs/foliantcontrib.testrail.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.slate.git

[2018-08-24] foliantcontrib.multilinetables 1.1.2
— Now it’s possible to break the text anywhere in multiline tables with custom tag.
— Fixed determination of columns number in tables with and without side lines.

[2018-08-24] foliantcontrib.pgsqldoc 1.1.0
— Docs and scheme structure is now defined by Jinja2 templates.

[2018-08-22] foliantcontrib.multilinetables 1.1.1
— Bug with regular expression fixed. 3+ code strings with || operator in a row are not

perceived as a tables now.

[2018-08-22] foliantcontrib.multilinetables 1.1.0
— Code strings with || operator are not perceived as a tables now.

[2018-07-31] foliantcontrib.bump 1.0.2
— Declare semver as dependency.

[2018-07-29] foliantcontrib.bump 1.0.1
— Fix packaging with setup.py. Poetry doesn’t quite do the trick😔

[2018-07-28] foliantcontrib.bump 1.0.0
Initial release.

[2018-07-24] foliantcontrib.mkdocs 1.0.4
— Provide customizable default names for untitled nested groups of chapters.

[2018-07-24] foliantcontrib.flatten 1.0.4
— Skip empty headings of nested subsections.

[2018-08-24] foliantcontrib.multilinetables 1.1.2 | .December 12, 2021 375

https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.pgsqldoc.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git
https://github.com/foliant-docs/foliantcontrib.bump.git
https://github.com/foliant-docs/foliantcontrib.bump.git
https://github.com/foliant-docs/foliantcontrib.bump.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.multilinetables.git

[2018-07-23] foliantcontrib.includes 1.0.8
— Require at least one space after hashes in the beginning of each heading.
— Add inline option to the <include> tag.
— Fix the bug: do not ignore empty lines after headings when using sethead.
— Fix the bug: allow to use less than 3 characters in the heading content.
— Do not mark as headings the strings that contain more than 6 leading hashes. If

shifted heading level is more than 6, mark the heading content as bold paragraph
text, not as heading.

[2018-06-08] foliantcontrib.multiproject 1.0.5
— Provide Git submodules support.

[2018-06-07] foliantcontrib.flatten 1.0.3
— Use flattened file path in includes preprocessor call.
— Require includes preprocessor 1.0.7.

[2018-06-06] foliantcontrib.includes 1.0.7
— Fix paths resolving in case of recursive processing of include statements.
— Allow revision markers in repo aliases.

[2018-06-04] foliantcontrib.includes 1.0.6
— Fix logging in file search method.
— Fix top heading level calculation.

[2018-06-04] foliantcontrib.multiproject 1.0.4
— Provide compatibility with Foliant 1.0.5. Allow to use multiple config files.

[2018-06-04] foliantcontrib.pandoc 1.0.6
— Apply flatten after all preprocessors, not before them. This fixes incompatibility

with foliantcontrib.includes 1.0.5.

[2018-07-23] foliantcontrib.includes 1.0.8 | .December 12, 2021 376

https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.includes.git

[2018-06-04] foliantcontrib.flatten 1.0.2
— Fix incorrect includes preprocessor call.
— Require Foliant 1.0.5.

[2018-06-04] foliantcontrib.init 1.0.5
— Require Foliant 1.0.5 with prompt_toolkit^2.0.0.

[2018-05-30] foliantcontrib.customids 1.0.4
— Provide separate block-level HTML elements for the anchors. Allow to define cus-

tom stylesheets for these elements.

[2018-05-25] foliantcontrib.includes 1.0.5
— Use paths that are relative to the current processed Markdown file.
— Fix sethead behavior for headings that contains hashes (#).

[2018-05-14] foliant 1.0.5
— Allow to override default config file name in CLI.
— Allow multiline tags. Process true and false attribute values as boolean, not

as integer.
— Add tests.
— Improve code style.

[2018-05-10] foliantcontrib.pandoc 1.0.5
— Add slug config option.

[2018-05-08] foliantcontrib.multiproject 1.0.3
— Fix config loading. Other small fixes.

[2018-04-25] foliantcontrib.multiproject 1.0.2
— Fix bugs with the project directory path and Git repos syncronizing.

[2018-06-04] foliantcontrib.flatten 1.0.2 | .December 12, 2021 377

https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.flatten.git

[2018-04-23] foliantcontrib.multiproject 1.0.1
— Fix logging.

[2018-04-20] foliantcontrib.bindsympli 1.0.5
— Add logging.

[2018-04-20] foliantcontrib.plantuml 1.0.2
— Fix logging in __init__.

[2018-04-20] foliantcontrib.plantuml 1.0.1
— Add logging.

[2018-04-20] foliantcontrib.flatten 1.0.1
— Fix incorrect includes preprocessor call.
— Add logging.
— Require Foliant 1.0.4.

[2018-04-19] foliantcontrib.epsconvert 1.0.4
— Do not use image path when computing MD5 hash.
— Add targets config option.
— Add logging.

[2018-04-19] foliantcontrib.templates.preprocessor
1.0.0
— Initial release.

[2018-04-18] foliantcontrib.customids 1.0.3
— Add targets config option.
— Add logging.

[2018-04-23] foliantcontrib.multiproject 1.0.1 | .December 12, 2021 378

https://github.com/foliant-docs/foliantcontrib.multiproject.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.plantuml.git
https://github.com/foliant-docs/foliantcontrib.flatten.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.templates.preprocessor.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.multiproject.git

[2018-04-14] foliantcontrib.blockdiag 1.0.2
— Add logging.
— Require Foliant 1.0.4.

[2018-04-14] foliantcontrib.pandoc 1.0.4
— Add logs.
— Update for Foliant 1.0.4: Pass logger to spinner.
— Require Foliant 1.0.4.

[2018-04-14] foliantcontrib.mkdocs 1.0.3
— Add logs.
— Update for Foliant 1.0.4: Pass logger to spinner.
— Require Foliant 1.0.4.

[2018-04-14] foliantcontrib.init 1.0.4
— Replace placeholders in file and directory names.
— Process *.py files.
— User Template strings instead of format strings for safer substitutions.
— Update for Foliant 1.0.4: Pass logger to spinner.
— Require Foliant 1.0.4.

[2018-04-11] foliant 1.0.4
— Breaking change. Add logging to all stages of building a project. Config

parser extensions, CLI extensions, backends, and preprocessors can now access
self.logger and create child loggers with self.logger = self.logger

.getChild('newbackend').
— Add pre backend with pre target that applies the preprocessors from the config

and returns a Foliant project that doesn’t require any preprocessing.
— make now returns its result, which makes is easier to call it from extensions.

[2018-04-10] foliantcontrib.bindsympli 1.0.4
— Describe the preprocessor usage in README.md.

[2018-04-14] foliantcontrib.blockdiag 1.0.2 | .December 12, 2021 379

https://github.com/foliant-docs/foliantcontrib.blockdiag.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.blockdiag.git

[2018-04-10] foliantcontrib.bindsympli 1.0.3
— Eliminate external Perl scripts, rewrite the preprocessor code in Python.

[2018-04-02] foliant 1.0.3
— Fix critical issue when config parsing would fail if any config value contained non-

latin characters.

[2018-04-01] foliantcontrib.includes 1.0.4
— Fix the pattern for headings detection.

[2018-03-31] foliantcontrib.includes 1.0.3
— Allow hashes (# characters) in the content of headings.

[2018-03-29] foliantcontrib.epsconvert 1.0.3
— Take into account the content of image file when computing MD5 hash.

[2018-03-29] foliantcontrib.epsconvert 1.0.2
— Add support of any local paths. Add image cache.
— Remove mogrify_path and diagrams_cache_dir options, add

convert_path and cache_dir instead.

[2018-03-28] foliantcontrib.customids 1.0.2
— Process first heading and all other headings separately.

[2018-03-27] foliantcontrib.customids 1.0.1
— Update README.md and docstrings.
— Update long description content type in setup.py

[2018-03-27] foliantcontrib.bindsympli 1.0.2
— Change the path for non-Python scripts once more.

[2018-04-10] foliantcontrib.bindsympli 1.0.3 | .December 12, 2021 380

https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.customids.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git

[2018-03-27] foliantcontrib.bindsympli 1.0.1
— Change the path for non-Python scripts.

[2018-03-21] foliantcontrib.includes 1.0.2
— Fix inappropriate translation of image URLs into local paths.

[2018-03-21] foliantcontrib.mkdocs 1.0.2
— Add use_headings and slug options for MkDocs backend.
— Fix inappropriate translation of image URLs into local paths in MkDocs preproces-

sor.

[2018-03-17] foliant 1.0.2
— Use README.md as package description.

[2018-03-13] foliantcontrib.epsconvert 1.0.1
— Add diagrams_cache_dir option support.

[2018-02-28] foliantcontrib.pandoc 1.0.3
— Change Pandoc command line parameter --reference-docx to --

reference-doc.

[2018-02-25] foliant 1.0.1
— Fix critical bug with CLI module caused by missing version definition in the root

__init__.py file.

[2018-02-23] foliant 1.0.0
— Complete rewrite.

[2018-02-16] foliantcontrib.blockdiag 1.0.1
— Add pdf output format support.

[2018-03-27] foliantcontrib.bindsympli 1.0.1 | .December 12, 2021 381

https://github.com/foliant-docs/foliantcontrib.bindsympli.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.epsconvert.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliant.git
https://github.com/foliant-docs/foliantcontrib.blockdiag.git
https://github.com/foliant-docs/foliantcontrib.bindsympli.git

[2018-02-07] foliantcontrib.init 1.0.3
— Upon creation, relative path to the created project directory is returned instead of

an absolute one.
— Templates: basic: Foliant docs related content removed from README.md.
— Templates: basic: foliantcontrib.mkdocs added to requirements.txt.

[2018-02-07] foliantcontrib.init 1.0.2
— Add slug placeholder.
— Process placeholders in .yml, .txt, and .md files, not just foliant.yml.
— Templates: basic: Add Dockerfile, docker-compose.yml,

requirements.txt, and README.md.

[2018-02-07] foliantcontrib.init 1.0.1
— Fix issue with init command missing after installation.
— Fix issue with missing templates after installation.

[2018-02-01] foliantcontrib.macros 1.0.3
— Add tag <m>...</m>.

[2018-01-17] foliantcontrib.macros 1.0.2
— Switch from unnamed to named parameters.
— Macro name is now defined in the tag body instead of “name” option.

[2018-01-15] foliantcontrib.macros 1.0.1
— Preserve param case.

[2018-01-06] foliantcontrib.flags 1.0.1
— Add targets and backends options to <if> tag.

[2018-01-05] foliantcontrib.pandoc 1.0.2
— Change default Markdown flavor from markdown_strict to markdown.

[2018-02-07] foliantcontrib.init 1.0.3 | .December 12, 2021 382

https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.init.git
https://github.com/foliant-docs/foliantcontrib.macros.git
https://github.com/foliant-docs/foliantcontrib.macros.git
https://github.com/foliant-docs/foliantcontrib.macros.git
https://github.com/foliant-docs/foliantcontrib.flags.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.init.git

[2017-12-17] foliantcontrib.pandoc 1.0.1
— Add tex target.

[2017-12-16] foliantcontrib.mkdocs 1.0.1
— Add ghp target for GitHub Pages deploy with mkdocs gh-deploy.

[2017-12-15] foliantcontrib.includes 1.0.1
— Fix git repo name detection when the repo part contains full stops.

[2017-12-17] foliantcontrib.pandoc 1.0.1 | .December 12, 2021 383

https://github.com/foliant-docs/foliantcontrib.pandoc.git
https://github.com/foliant-docs/foliantcontrib.mkdocs.git
https://github.com/foliant-docs/foliantcontrib.includes.git
https://github.com/foliant-docs/foliantcontrib.pandoc.git

	Welcome to Foliant!
	Who Is It for?
	Changelog
	1.0.12
	1.0.11
	1.0.10
	1.0.9
	1.0.8
	1.0.7
	1.0.6
	1.0.5
	1.0.4
	1.0.3
	1.0.2
	1.0.1
	1.0.0

	Installation
	macOS
	Windows
	Ubuntu
	Docker

	Quickstart
	Tutorials
	Your First Foliant Project
	Create New Project
	Build Site
	Build PDF
	Edit Content
	Use Preprocessors
	Embed Diagrams with Blockdiag

	Running Foliant in Docker
	Getting Docker
	Creating a Test Project
	Setting up Docker configs
	Using different Foliant Docker images
	Working with Foliant full image

	Summary
	Documenting API with Foliant
	OpenAPI
	Installing prerequisites
	Creating project
	Configuring project

	RAML
	Installing prerequisites
	Creating project
	Configuring project

	Blueprint
	Installing prerequisites
	Creating project
	Configuring project

	Documenting Databases with Foliant
	Introduction
	The principles
	The tutorials

	Documenting DBML schema
	Installing prerequisites
	Creating project
	Setting up project
	Building site

	Documenting Oracle Database
	Installing prerequisites
	Creating project
	Setting up project
	Building site

	Documenting PostgreSQL Database
	Installing prerequisites
	Creating project
	Setting up project
	Building site

	Creating a Preprocessor
	Introduction
	Creating the Gibberish Generator
	Formalizing the Preprocessor
	Installing and Testing
	Summary

	Architecture And Basic Design Concepts
	Overview
	Configuration Layer
	Preprocessing Layer
	Build Layer

	Foliant Extensions
	Project Build Process

	Project Configuration
	Config Sections
	Root Options
	chapters
	preprocessors
	backend_config

	Modifiers
	!include
	!path, !project_path, !rel_path
	!env

	Debugging Builds
	Notes on Docker Use
	Logging
	Debugging extensions
	The pre backend
	Keeping the project sources

	Killing Two Birds With One Stone

	Metadata
	User's guide
	Syntax
	Sections
	Special fields
	The Meta registry
	Additional info

	Developer's guide
	Getting metadata
	The Meta class
	The Chapter class
	The Section class

	Developer's Reference
	Core Modules
	The make() Method Arguments

	Base Classes
	The BaseBackend() Attributes
	The BasePreprocessor() Attributes
	BaseCli() Attributes
	BaseConfig() Attributes

	Backends
	Aglio
	Aglio Backend for Foliant
	Installation
	Usage
	Config
	Customizing output
	Templates
	Color scheme
	Stylesheets

	Confluence
	Installation
	Usage
	Config
	User's guide
	Uploading articles
	Creating pages
	Updating pages
	Updating part of a page
	Inserting raw confluence tags
	Attaching files
	Advanced images
	Code blocks processing
	Supplying Credentials

	Credits

	MdToPdf
	MdToPdf backend for Foliant
	Installation
	Usage
	Config

	MkDocs
	MkDocs Backend for Foliant
	Installation
	Usage
	Config
	Preprocessor
	Troubleshooting
	Fenced Code Is Not Rendered in List Items or Blockquotes
	Paragraphs Inside List Items Are Rendered on the Root Level

	Pandoc
	Pandoc Backend for Foliant
	Installation
	Usage
	Config
	Build modes
	Troubleshooting
	Could not convert image …: check that rsvg2pdf is in path
	LaTeX listings package does not work correctly with non-ASCII characters, e.g. Cyrillic letters

	Slate
	Slate Backend for Foliant
	Installation
	Usage
	Config
	About shards

	Preprocessors
	General Notes
	Admonitions
	Admonitions preprocessor for Foliant
	Installation
	Config
	Usage
	Notes for slate

	Anchors
	Anchors
	Installation
	Config
	Usage
	Additional info
	Notice for Mkdocs

	APIReferences
	APIReferences Preprocessor for Foliant
	What is it for?
	How does it work?
	Quick Recipes
	Recipe 1: find by tag content
	Recipe 2: find by tag id
	Recipe 3: generate tag id
	Recipe 4: find link for SwaggerUI

	Installation
	Config

	User guide
	API Modes
	generate_anchor mode
	find_by_anchor mode
	find_by_tag_content mode
	find_for_swagger mode
	find_for_redoc mode

	Handling Multiple APIs
	Handling Multiple Reference Configuration
	Commands and Endpoint Prefixes

	Capturing References
	Customizing Output

	Archeme
	Archeme
	Installation
	Config
	Usage
	Examples

	Argdown
	Argdown Diagrams Preprocessor for Foliant
	Installation
	Config
	Usage

	Badges
	Badges
	Installation
	Config
	Usage
	Variables

	BindFigma
	BindFigma
	Installation
	Config
	Usage

	BindSympli
	BindSympli
	Installation
	Config
	Usage

	Blockdiag
	Blockdiag Preprocessor for Foliant
	Installation
	Config
	Usage

	BPMN
	BPMN Diagrams Preprocessor for Foliant
	Installation
	Config
	Usage

	Confluence
	Installation
	Config
	Usage
	Supplying Credentials

	CSVTables
	CSVTables for Foliant
	Installation
	Config
	Usage
	Example

	CustomIDs
	СustomIDs
	Installation
	Usage

	DBMLDoc
	DBML Docs Generator for Foliant
	Installation
	Config
	Usage
	Customizing output

	DBDoc
	Database Documentation Generator for Foliant
	Installation
	Prerequisites
	Preprocessor

	Config
	Usage
	Filters
	About Templates
	Troubleshooting

	Elasticsearch
	Installation
	Config
	Usage

	Epsconvert
	Installation
	Config

	EscapeCode and UnescapeCode
	EscapeCode and UnescapeCode
	Installation
	Integration with Foliant and Includes
	Explicit Enabling
	Config
	Usage

	Flags
	Conditional Blocks for Foliant
	Installation
	Config
	Usage

	Flatten
	Project Flattener for Foliant
	Installation
	Config

	Glossary
	Glossary collector for Foliant
	Installation
	Config
	Usage
	Example

	Graphviz
	Graphviz Diagrams Preprocessor for Foliant
	Installation
	Config
	Usage

	History
	History
	Installation
	Config
	Usage

	ImageMagick
	ImageMagick Preprocessor
	Installation
	Config
	Usage

	ImgCaptions
	Installation
	Usage

	ImgConvert
	Installation
	Config

	Includes
	Includes for Foliant
	Installation
	Config
	Usage
	The New Syntax
	Optional Attributes Supported in Both Syntax Variants
	The Legacy Syntax

	Macros
	Macros for Foliant
	Installation
	Config
	Usage
	Realworld example

	Mermaid
	Mermaid Diagrams Preprocessor for Foliant
	Installation
	Config
	Usage

	MetaGraph
	MetaGraph preprocessor for Foliant
	Installation
	Config
	Usage

	MultilineTables
	Installation
	Config
	Usage

	Pgsqldoc
	PostgreSQL Docs Generator for Foliant
	Installation
	Config
	Usage
	Filters
	About Templates

	Plantuml
	PlantUML Diagrams Preprocessor for Foliant
	Installation
	Config
	Usage

	RAMLDoc
	RAML API Docs Generator for Foliant
	Installation
	Config
	Usage
	Customizing output

	Reindexer
	Installation
	Config
	Usage

	RemoveExcess
	Installation
	Config
	Usage

	Replace
	Replace text for Foliant
	Installation
	Config
	Usage

	RepoLink
	Installation
	Usage

	RunCommands
	Installation
	Usage
	Supported environment variables

	ShowCommits
	ShowCommits Preprocessor
	Installation
	Config
	Usage

	SuperLinks
	SuperLinks for Foliant
	The Problem
	Installation
	Config
	Usage
	Examples
	Supported Backends:

	SwaggerDoc
	Swagger API Docs Generator for Foliant
	Installation
	Config
	Usage
	Customizing output
	Widdershins
	Jinja

	TemplateParser
	TemplateParser preprocessor for Foliant
	Installation
	Config
	Usage
	Sending variables to template
	Built-in variables
	Integration with metadata
	Extends and includes
	Pro tips

	Testrail
	Installation
	Config
	Usage
	Tips

	CLI Extensions
	Bump
	Installation
	Usage

	Gupload
	Installation
	Config
	Usage
	Notes

	Meta Generate
	Usage
	Config

	Init
	Installation
	Usage
	Project Templates

	Init Templates
	Preprocessor
	Installation
	Usage

	Src
	Installation
	Usage

	Subset
	Installation
	Usage

	Config Extensions
	AltStructure
	AltStructure Extension
	Installation
	Configuration
	Usage
	Special node types
	Using preprocessor

	DownloadFile
	DownloadFile Extension
	Installation
	Usage
	!download YAML tag

	MultiProject
	Installation
	Usage

	Slugs
	Installation
	Usage
	Slug
	Version

	YAMLInclude
	YAMLInclude Extension
	Installation
	Usage

	History of Releases
	[2021-12-12] foliantcontrib.confluence 0.6.20
	[2021-12-12] foliantcontrib.replace 2.0.0
	[2021-12-12] foliantcontrib.superlinks 1.0.12
	[2021-10-07] foliantcontrib.pandoc 1.1.2
	[2021-08-17] foliantcontrib.dbdoc 0.1.8
	[2021-08-04] foliantcontrib.argdown 0.1.1
	[2021-08-03] foliantcontrib.argdown 0.1.0
	[2021-08-03] foliantcontrib.superlinks 1.0.11
	[2021-08-02] foliantcontrib.bpmn 1.0.1
	[2021-08-02] foliantcontrib.pgsqldoc 1.1.7
	[2021-08-02] foliantcontrib.apilinks 1.2.6
	[2021-08-02] foliantcontrib.utils 1.0.3
	[2021-07-21] foliantcontrib.pandoc 1.1.1
	[2021-07-21] foliantcontrib.meta 1.3.3
	[2021-07-21] foliantcontrib.csvtables 1.0.2
	[2021-07-21] foliantcontrib.mermaid 1.0.2
	[2021-07-21] foliantcontrib.ramldoc 1.0.2
	[2021-07-21] foliantcontrib.admonitions 1.0.1
	[2021-07-21] foliantcontrib.metagraph 0.1.3
	[2021-07-21] foliantcontrib.swaggerdoc 1.2.4
	[2021-07-20] foliantcontrib.apireferences 1.0.2
	[2021-07-20] foliantcontrib.dbdoc 0.1.7
	[2021-07-20] foliantcontrib.dbmldoc 0.3.1
	[2021-07-20] foliantcontrib.plantuml 1.0.10
	[2021-07-20] foliantcontrib.graphviz 1.1.5
	[2021-07-20] foliantcontrib.templateparser 1.0.6
	[2021-07-20] foliantcontrib.alt_structure 0.2.1
	[2021-07-20] foliantcontrib.anchors 1.0.7
	[2021-07-20] foliantcontrib.confluence 0.6.19
	[2021-07-19] foliantcontrib.superlinks 1.0.10
	[2021-07-15] foliantcontrib.utils 1.0.2
	[2021-07-14] foliantcontrib.utils 1.0.1
	[2021-06-18] foliantcontrib.plantuml 1.0.9
	[2021-05-20] foliantcontrib.dbmldoc 0.3.0
	[2021-05-07] foliantcontrib.multiproject 1.0.15
	[2021-05-07] foliantcontrib.yaml_include 1.0.1
	[2021-05-06] foliantcontrib.downloadfile 1.0.1
	[2021-05-04] foliantcontrib.downloadfile 1.0.0
	[2021-04-20] foliantcontrib.anchors 1.0.6
	[2021-04-01] foliantcontrib.confluence 0.6.18
	[2021-03-11] foliantcontrib.apilinks 1.2.5
	[2021-03-11] foliantcontrib.apireferences 1.0.1
	[2021-03-10] foliantcontrib.confluence 0.6.17
	[2021-03-10] foliantcontrib.yaml_include 1.0.0
	[2021-03-09] foliantcontrib.apireferences 1.0.0
	[2021-02-18] foliantcontrib.confluence 0.6.16
	[2021-02-03] foliantcontrib.apilinks 1.2.4
	[2021-02-01] foliantcontrib.plantuml 1.0.8
	[2021-01-25] foliantcontrib.dbdoc 0.1.6
	[2021-01-22] foliantcontrib.apilinks 1.2.3
	[2020-12-18] foliantcontrib.confluence 0.6.15
	[2020-12-04] foliantcontrib.templateparser 1.0.5
	[2020-12-03] foliantcontrib.replace 1.0.5
	[2020-11-27] foliantcontrib.superlinks 1.0.9
	[2020-11-17] foliantcontrib.customids 1.0.7
	[2020-11-16] foliantcontrib.utils 1.0.0
	[2020-11-10] foliantcontrib.dbdoc 0.1.5
	[2020-11-02] foliantcontrib.apilinks 1.2.2
	[2020-10-28] foliantcontrib.superlinks 1.0.8
	[2020-10-20] foliantcontrib.pandoc 1.1.0
	[2020-10-16] foliantcontrib.confluence 0.6.14
	[2020-10-14] foliantcontrib.graphviz 1.1.4
	[2020-10-08] foliantcontrib.superlinks 1.0.7
	[2020-10-07] foliantcontrib.apilinks 1.2.1
	[2020-10-06] foliantcontrib.apilinks 1.2.0
	[2020-09-16] foliantcontrib.archeme 1.0.3
	[2020-09-07] foliantcontrib.reindexer 1.0.1
	[2020-08-26] foliantcontrib.superlinks 1.0.6
	[2020-08-25] foliantcontrib.superlinks 1.0.5
	[2020-08-24] foliantcontrib.swaggerdoc 1.2.3
	[2020-08-21] foliantcontrib.confluence 0.6.13
	[2020-08-21] foliantcontrib.dbdoc 0.1.4
	[2020-08-20] foliantcontrib.dbdoc 0.1.3
	[2020-07-31] foliantcontrib.escapecode 1.0.4
	[2020-07-29] foliantcontrib.includes 1.1.13
	[2020-07-29] foliantcontrib.includes 1.1.12
	[2020-07-22] foliant 1.0.12
	[2020-07-22] foliantcontrib.pandoc 1.0.11
	[2020-07-22] foliantcontrib.mkdocs 1.0.12
	[2020-07-20] foliantcontrib.multiproject 1.0.14
	[2020-07-19] foliantcontrib.escapecode 1.0.3
	[2020-07-14] foliantcontrib.confluence 0.6.12
	[2020-07-09] foliantcontrib.multilinetables 1.2.3
	[2020-07-09] foliantcontrib.includes 1.1.11
	[2020-06-16] foliantcontrib.confluence 0.6.11
	[2020-06-10] foliantcontrib.testrail 1.3.1
	[2020-06-09] foliantcontrib.testrail 1.3.0
	[2020-06-09] foliantcontrib.flatten 1.0.7
	[2020-06-08] foliantcontrib.testrail 1.2.2
	[2020-06-05] foliantcontrib.dbdoc 0.1.2
	[2020-06-05] foliantcontrib.swaggerdoc 1.2.2
	[2020-06-05] foliantcontrib.dbdoc 0.1.1
	[2020-06-03] foliantcontrib.dbmldoc 0.2.4
	[2020-06-02] foliantcontrib.pgsqldoc 1.1.6
	[2020-06-02] foliantcontrib.dbdoc 0.1.0
	[2020-05-28] foliantcontrib.testrail 1.2.1
	[2020-05-27] foliantcontrib.bindfigma 1.0.3
	[2020-05-27] foliantcontrib.bindfigma 1.0.2
	[2020-05-26] foliantcontrib.testrail 1.2.0
	[2020-05-22] foliantcontrib.templateparser 1.0.4
	[2020-05-20] foliantcontrib.superlinks 1.0.4
	[2020-04-23] foliantcontrib.archeme 1.0.2
	[2020-04-23] foliantcontrib.archeme 1.0.1
	[2020-04-22] foliantcontrib.dbmldoc 0.1
	[2020-04-17] foliantcontrib.multiproject 1.0.13
	[2020-04-14] foliantcontrib.elasticsearch 1.0.4
	[2020-04-10] foliantcontrib.replace 1.0.4
	[2020-04-10] foliantcontrib.alt_structure 0.2.0
	[2020-04-10] foliantcontrib.showcommits 1.0.2
	[2020-04-09] foliantcontrib.elasticsearch 1.0.3
	[2020-04-06] foliantcontrib.meta 1.3.2
	[2020-04-02] foliantcontrib.confluence 0.6.10
	[2020-04-01] foliantcontrib.testcoverage 0.1.1
	[2020-04-01] foliantcontrib.testcoverage 0.1.0
	[2020-04-01] foliantcontrib.metagraph 0.1.2
	[2020-03-27] foliantcontrib.metagraph 0.1.1
	[2020-03-26] foliantcontrib.metagraph 0.1.0
	[2020-03-26] foliantcontrib.templateparser 1.0.3
	[2020-03-26] foliantcontrib.meta 1.3.1
	[2020-03-25] foliantcontrib.confluence 0.6.8
	[2020-03-25] foliantcontrib.confluence 0.6.9
	[2020-03-12] foliantcontrib.testrail 1.1.11
	[2020-03-12] foliantcontrib.testrail 1.1.10
	[2020-03-11] foliantcontrib.confluence 0.6.7
	[2020-03-05] foliantcontrib.graphviz 1.1.3
	[2020-02-28] foliantcontrib.bindfigma 1.0.1
	[2020-02-12] foliantcontrib.alt_structure 0.1.2
	[2020-02-10] foliantcontrib.alt_structure 0.1.1
	[2020-02-06] foliantcontrib.mkdocs 1.0.11
	[2020-02-04] foliantcontrib.slate 1.0.8
	[2020-02-04] foliantcontrib.superlinks 1.0.3
	[2020-02-04] foliantcontrib.includes 1.1.9
	[2020-02-04] foliantcontrib.meta 1.3.0
	[2020-02-04] foliantcontrib.confluence 0.6.6
	[2020-02-03] foliantcontrib.meta 1.2.3
	[2020-01-31] foliantcontrib.elasticsearch 1.0.2
	[2020-01-31] foliantcontrib.elasticsearch 1.0.1
	[2020-01-22] foliantcontrib.confluence 0.6.5
	[2019-12-24] foliantcontrib.superlinks 1.0.2
	[2019-12-24] foliantcontrib.anchors 1.0.4
	[2019-12-24] foliantcontrib.testrail 1.1.9
	[2019-12-23] foliantcontrib.superlinks 1.0.1
	[2019-12-20] foliantcontrib.anchors 1.0.3
	[2019-12-20] foliantcontrib.meta 1.2.2
	[2019-12-12] foliantcontrib.showcommits 1.0.1
	[2019-12-12] foliantcontrib.flatten 1.0.6
	[2019-12-04] foliantcontrib.slate 1.0.7
	[2019-12-02] foliantcontrib.init 1.0.8
	[2019-11-22] foliantcontrib.meta 1.2.1
	[2019-11-21] foliantcontrib.meta 1.2.0
	[2019-11-21] foliantcontrib.confluence 0.6.4
	[2019-11-21] foliantcontrib.includes 1.1.8
	[2019-11-20] foliantcontrib.imgcaptions 1.0.2
	[2019-11-09] foliantcontrib.mdtopdf 1.0.0
	[2019-11-06] foliantcontrib.ramldoc 1.0.1
	[2019-10-28] foliantcontrib.aglio 1.0.0
	[2019-10-25] foliantcontrib.slate 1.0.6
	[2019-10-25] foliantcontrib.slate 1.0.5
	[2019-10-16] foliantcontrib.escapecode 1.0.2
	[2019-10-16] foliantcontrib.multiproject 1.0.12
	[2019-10-16] foliantcontrib.includes 1.1.7
	[2019-10-16] foliant 1.0.11
	[2019-10-15] foliantcontrib.subset 1.0.9
	[2019-10-10] foliantcontrib.multiproject 1.0.11
	[2019-10-07] foliantcontrib.confluence 0.6.3
	[2019-10-04] foliantcontrib.mermaid 1.0.1
	[2019-10-01] foliantcontrib.confluence 0.6.2
	[2019-10-01] foliantcontrib.multiproject 1.0.10
	[2019-09-26] foliantcontrib.flatten 1.0.5
	[2019-09-25] foliantcontrib.confluence 0.6.0
	[2019-09-19] foliantcontrib.confluence 0.5.2
	[2019-09-19] foliantcontrib.history 1.0.8
	[2019-09-18] foliantcontrib.history 1.0.7
	[2019-09-16] foliantcontrib.history 1.0.6
	[2019-09-16] foliantcontrib.history 1.0.5
	[2019-09-13] foliantcontrib.history 1.0.4
	[2019-09-13] foliantcontrib.history 1.0.3
	[2019-09-10] foliantcontrib.epsconvert 1.0.7
	[2019-09-09] foliantcontrib.history 1.0.2
	[2019-09-06] foliantcontrib.history 1.0.1
	[2019-08-28] foliantcontrib.includes 1.1.6
	[2019-08-27] foliantcontrib.includes 1.1.5
	[2019-08-26] foliantcontrib.mkdocs 1.0.10
	[2019-08-26] foliantcontrib.swaggerdoc 1.2.0
	[2019-08-26] foliantcontrib.customids 1.0.6
	[2019-08-26] foliantcontrib.confluence 0.4.1
	[2019-08-23] foliantcontrib.includes 1.1.4
	[2019-08-23] foliantcontrib.confluence 0.4.0
	[2019-08-23] foliantcontrib.mkdocs 1.0.9
	[2019-08-23] foliantcontrib.epsconvert 1.0.6
	[2019-08-22] foliantcontrib.imagemagick 1.0.2
	[2019-08-22] foliantcontrib.meta 1.1.0
	[2019-08-22] foliantcontrib.confluence 0.3.0
	[2019-08-20] foliantcontrib.meta 1.0.3
	[2019-08-16] foliantcontrib.confluence 0.2.0
	[2019-08-15] foliantcontrib.confluence 0.1.0
	[2019-08-14] foliantcontrib.includes 1.1.3
	[2019-08-02] foliantcontrib.escapecode 1.0.1
	[2019-08-01] foliantcontrib.replace 1.0.3
	[2019-08-01] foliantcontrib.mermaid 1.0.0
	[2019-07-30] foliantcontrib.includes 1.1.2
	[2019-07-30] foliant 1.0.10
	[2019-07-30] foliantcontrib.includes 1.1.1
	[2019-07-16] foliantcontrib.bindsympli 1.0.14
	[2019-07-15] foliantcontrib.slugs 1.0.1
	[2019-07-09] foliantcontrib.docus 0.2.0
	[2019-07-09] foliantcontrib.docus 0.1.0
	[2019-07-05] foliantcontrib.runcommands 1.0.1
	[2019-07-01] foliantcontrib.meta 1.0.2
	[2019-07-01] foliantcontrib.project_graph 1.0.1
	[2019-07-01] foliantcontrib.meta 1.0.1
	[2019-06-28] foliantcontrib.project_graph 1.0.0
	[2019-06-28] foliantcontrib.meta 1.0.0
	[2019-06-28] foliantcontrib.includes 1.1.0
	[2019-06-17] foliant 1.0.9
	[2019-06-14] foliantcontrib.templateparser 1.0.2
	[2019-06-14] foliantcontrib.bindsympli 1.0.13
	[2019-06-13] foliantcontrib.badges 1.0.2
	[2019-06-11] foliantcontrib.badges 1.0.1
	[2019-06-11] foliantcontrib.badges 1.0.0
	[2019-06-10] foliantcontrib.admonitions 1.0.0
	[2019-05-20] foliantcontrib.graphviz 1.1.1
	[2019-05-20] foliantcontrib.templateparser 1.0.1
	[2019-05-17] foliantcontrib.blockdiag 1.0.5
	[2019-05-17] foliantcontrib.plantuml 1.0.6
	[2019-05-14] foliantcontrib.templateparser 1.0.0
	[2019-04-30] foliantcontrib.bindsympli 1.0.12
	[2019-04-15] foliantcontrib.swaggerdoc 1.1.3
	[2019-04-10] foliantcontrib.mkdocs 1.0.8
	[2019-04-10] foliantcontrib.pandoc 1.0.10
	[2019-04-10] foliantcontrib.pandoc 1.0.9
	[2019-04-05] foliantcontrib.includes 1.0.11
	[2019-03-27] foliantcontrib.graphviz 1.0.6
	[2019-03-21] foliantcontrib.anchors 1.0.5
	[2019-03-21] foliantcontrib.anchors 1.0.2
	[2019-03-21] foliantcontrib.anchors 1.0.1
	[2019-03-21] foliantcontrib.anchors 1.0.0
	[2019-03-14] foliantcontrib.notifier 1.0.0
	[2019-02-21] foliantcontrib.testrail 1.1.8
	[2019-02-18] foliantcontrib.replace 1.0.2
	[2019-02-15] foliantcontrib.csvtables 1.0.1
	[2019-02-14] foliantcontrib.graphviz 1.0.4
	[2019-02-14] foliantcontrib.apilinks 1.1.3
	[2019-02-14] foliantcontrib.pgsqldoc 1.1.5
	[2019-02-12] foliantcontrib.testrail 1.1.7
	[2019-02-08] foliantcontrib.testrail 1.1.6
	[2019-02-01] foliantcontrib.testrail 1.1.5
	[2019-01-21] foliantcontrib.apilinks 1.1.1
	[2019-01-10] foliantcontrib.bindsympli 1.0.11
	[2018-12-24] foliantcontrib.graphviz 1.0.2
	[2018-12-20] foliantcontrib.bindsympli 1.0.10
	[2018-12-17] foliantcontrib.graphviz 1.0.1
	[2018-12-17] foliantcontrib.graphviz 1.0.0
	[2018-12-13] foliantcontrib.apilinks 1.1.0
	[2018-12-06] foliantcontrib.subset 1.0.8
	[2018-12-06] foliantcontrib.subset 1.0.7
	[2018-12-06] foliantcontrib.bindsympli 1.0.9
	[2018-12-04] foliantcontrib.subset 1.0.6
	[2018-12-04] foliantcontrib.multiproject 1.0.9
	[2018-12-04] foliantcontrib.apilinks 1.0.5
	[2018-12-03] foliantcontrib.apilinks 1.0.4
	[2018-11-29] foliantcontrib.apilinks 1.0.3
	[2018-11-29] foliantcontrib.apilinks 1.0.2
	[2018-11-29] foliantcontrib.apilinks 1.0.1
	[2018-11-27] foliantcontrib.apilinks 1.0.0
	[2018-11-23] foliantcontrib.templates.preprocessor 1.0.3
	[2018-11-20] foliantcontrib.testrail 1.1.4
	[2018-11-20] foliantcontrib.testrail 1.1.3
	[2018-11-19] foliantcontrib.testrail 1.1.2
	[2018-11-19] foliantcontrib.testrail 1.1.1
	[2018-11-19] foliantcontrib.testrail 1.1.0
	[2018-11-19] foliantcontrib.pgsqldoc 1.1.3
	[2018-11-16] foliantcontrib.templates.preprocessor 1.0.2
	[2018-11-16] foliantcontrib.multiproject 1.0.8
	[2018-11-16] foliantcontrib.macros 1.0.4
	[2018-11-16] foliantcontrib.includes 1.0.10
	[2018-11-16] foliantcontrib.imgcaptions 1.0.1
	[2018-11-16] foliantcontrib.imagemagick 1.0.1
	[2018-11-16] foliantcontrib.flags 1.0.2
	[2018-11-16] foliantcontrib.epsconvert 1.0.5
	[2018-11-16] foliantcontrib.customids 1.0.5
	[2018-11-16] foliantcontrib.bindsympli 1.0.8
	[2018-11-16] foliantcontrib.gupload 1.1.5
	[2018-11-16] foliantcontrib.slate 1.0.4
	[2018-11-14] foliantcontrib.plantuml 1.0.5
	[2018-11-14] foliantcontrib.blockdiag 1.0.4
	[2018-11-14] foliantcontrib.mkdocs 1.0.7
	[2018-11-14] foliantcontrib.pandoc 1.0.8
	[2018-11-14] foliantcontrib.init 1.0.7
	[2018-11-14] foliant 1.0.8
	[2018-11-14] foliantcontrib.pandoc 1.0.7
	[2018-11-14] foliantcontrib.mkdocs 1.0.6
	[2018-11-14] foliant 1.0.7
	[2018-11-13] foliantcontrib.init 1.0.6
	[2018-11-12] foliantcontrib.multilinetables 1.2.2
	[2018-11-09] foliantcontrib.subset 1.0.5
	[2018-11-09] foliantcontrib.plantuml 1.0.4
	[2018-11-09] foliantcontrib.blockdiag 1.0.3
	[2018-11-08] foliantcontrib.slate 1.0.3
	[2018-11-08] foliantcontrib.testrail 1.0.7
	[2018-11-08] foliantcontrib.plantuml 1.0.3
	[2018-11-08] foliantcontrib.testrail 1.0.6
	[2018-11-07] foliantcontrib.testrail 1.0.5
	[2018-11-07] foliantcontrib.testrail 1.0.4
	[2018-11-02] foliantcontrib.gupload 1.1.4
	[2018-11-01] foliantcontrib.templates.preprocessor 1.0.1
	[2018-11-01] foliantcontrib.gupload 1.1.3
	[2018-10-31] foliantcontrib.swaggerdoc 1.1.2
	[2018-10-31] foliantcontrib.swaggerdoc 1.1.1
	[2018-10-30] foliantcontrib.multilinetables 1.2.1
	[2018-10-30] foliantcontrib.testrail 1.0.3
	[2018-10-29] foliantcontrib.bindsympli 1.0.7
	[2018-10-29] foliantcontrib.testrail 1.0.2
	[2018-10-29] foliantcontrib.multilinetables 1.2.0
	[2018-10-24] foliantcontrib.multiproject 1.0.7
	[2018-10-23] foliantcontrib.multiproject 1.0.6
	[2018-10-23] foliantcontrib.subset 1.0.4
	[2018-10-23] foliantcontrib.subset 1.0.3
	[2018-10-23] foliantcontrib.subset 1.0.2
	[2018-10-22] foliantcontrib.subset 1.0.1
	[2018-10-19] foliantcontrib.swaggerdoc 1.1.0
	[2018-10-11] foliantcontrib.includes 1.0.9
	[2018-10-11] foliantcontrib.mkdocs 1.0.5
	[2018-10-02] foliantcontrib.replace 1.0.1
	[2018-10-01] foliantcontrib.gupload 1.1.2
	[2018-09-25] foliantcontrib.gupload 1.1.1
	[2018-09-25] foliantcontrib.gupload 1.1.0
	[2018-09-25] foliantcontrib.multilinetables 1.1.3
	[2018-09-21] foliantcontrib.slate 1.0.2
	[2018-09-20] foliantcontrib.slate 1.0.1
	[2018-09-18] foliantcontrib.gupload 1.0.1
	[2018-09-14] foliantcontrib.testrail 1.0.1
	[2018-09-12] foliantcontrib.bindsympli 1.0.6
	[2018-08-31] foliant 1.0.6
	[2018-08-29] foliantcontrib.pgsqldoc 1.1.2
	[2018-08-27] foliantcontrib.pgsqldoc 1.1.1
	[2018-08-24] foliantcontrib.multilinetables 1.1.2
	[2018-08-24] foliantcontrib.pgsqldoc 1.1.0
	[2018-08-22] foliantcontrib.multilinetables 1.1.1
	[2018-08-22] foliantcontrib.multilinetables 1.1.0
	[2018-07-31] foliantcontrib.bump 1.0.2
	[2018-07-29] foliantcontrib.bump 1.0.1
	[2018-07-28] foliantcontrib.bump 1.0.0
	[2018-07-24] foliantcontrib.mkdocs 1.0.4
	[2018-07-24] foliantcontrib.flatten 1.0.4
	[2018-07-23] foliantcontrib.includes 1.0.8
	[2018-06-08] foliantcontrib.multiproject 1.0.5
	[2018-06-07] foliantcontrib.flatten 1.0.3
	[2018-06-06] foliantcontrib.includes 1.0.7
	[2018-06-04] foliantcontrib.includes 1.0.6
	[2018-06-04] foliantcontrib.multiproject 1.0.4
	[2018-06-04] foliantcontrib.pandoc 1.0.6
	[2018-06-04] foliantcontrib.flatten 1.0.2
	[2018-06-04] foliantcontrib.init 1.0.5
	[2018-05-30] foliantcontrib.customids 1.0.4
	[2018-05-25] foliantcontrib.includes 1.0.5
	[2018-05-14] foliant 1.0.5
	[2018-05-10] foliantcontrib.pandoc 1.0.5
	[2018-05-08] foliantcontrib.multiproject 1.0.3
	[2018-04-25] foliantcontrib.multiproject 1.0.2
	[2018-04-23] foliantcontrib.multiproject 1.0.1
	[2018-04-20] foliantcontrib.bindsympli 1.0.5
	[2018-04-20] foliantcontrib.plantuml 1.0.2
	[2018-04-20] foliantcontrib.plantuml 1.0.1
	[2018-04-20] foliantcontrib.flatten 1.0.1
	[2018-04-19] foliantcontrib.epsconvert 1.0.4
	[2018-04-19] foliantcontrib.templates.preprocessor 1.0.0
	[2018-04-18] foliantcontrib.customids 1.0.3
	[2018-04-14] foliantcontrib.blockdiag 1.0.2
	[2018-04-14] foliantcontrib.pandoc 1.0.4
	[2018-04-14] foliantcontrib.mkdocs 1.0.3
	[2018-04-14] foliantcontrib.init 1.0.4
	[2018-04-11] foliant 1.0.4
	[2018-04-10] foliantcontrib.bindsympli 1.0.4
	[2018-04-10] foliantcontrib.bindsympli 1.0.3
	[2018-04-02] foliant 1.0.3
	[2018-04-01] foliantcontrib.includes 1.0.4
	[2018-03-31] foliantcontrib.includes 1.0.3
	[2018-03-29] foliantcontrib.epsconvert 1.0.3
	[2018-03-29] foliantcontrib.epsconvert 1.0.2
	[2018-03-28] foliantcontrib.customids 1.0.2
	[2018-03-27] foliantcontrib.customids 1.0.1
	[2018-03-27] foliantcontrib.bindsympli 1.0.2
	[2018-03-27] foliantcontrib.bindsympli 1.0.1
	[2018-03-21] foliantcontrib.includes 1.0.2
	[2018-03-21] foliantcontrib.mkdocs 1.0.2
	[2018-03-17] foliant 1.0.2
	[2018-03-13] foliantcontrib.epsconvert 1.0.1
	[2018-02-28] foliantcontrib.pandoc 1.0.3
	[2018-02-25] foliant 1.0.1
	[2018-02-23] foliant 1.0.0
	[2018-02-16] foliantcontrib.blockdiag 1.0.1
	[2018-02-07] foliantcontrib.init 1.0.3
	[2018-02-07] foliantcontrib.init 1.0.2
	[2018-02-07] foliantcontrib.init 1.0.1
	[2018-02-01] foliantcontrib.macros 1.0.3
	[2018-01-17] foliantcontrib.macros 1.0.2
	[2018-01-15] foliantcontrib.macros 1.0.1
	[2018-01-06] foliantcontrib.flags 1.0.1
	[2018-01-05] foliantcontrib.pandoc 1.0.2
	[2017-12-17] foliantcontrib.pandoc 1.0.1
	[2017-12-16] foliantcontrib.mkdocs 1.0.1
	[2017-12-15] foliantcontrib.includes 1.0.1

